
Introduction to Computer Architectures 1

Answers ICAR Software Laboratory : VAX

Question: When reading an instruction from memory what is the advantage of
specifying the destination register last? Answer: may be possible to fetch operand data
whilst instruction is read (instruction may take a number of cycles to read) i.e. result
has not been generated, therefore, destination register is not needed at this time.

Question: Why would an Addb2 instruction execute faster than an Addb3
instruction? Answer: may be quicker as instruction length is smaller as less
information must be read from memory.

Questions: What is the advantage / disadvantage of an instruction set that allows the
numbers of operands to be selected i.e. 2 or 3 operand formats? Answer: don’t always
need three operands i.e. separate source and destinations, therefore, can save
instruction memory by using a smaller instruction.

Question: how many bits will be required to encode this addl3 instruction?
Answer:

addl3 15(r2),(r3)[r4], r1 ;3 operand Long word ADD

 8 : 16 : 4 4 4 4 = 40 bits

Question: If operands can be either register, memory, or constants, what is the
maximum and minimum number of bits required to represent this instruction?
Answer: the biggest length instruction would be one that uses absolute addressing as a
full 32bit address with be required for each operand and result

 8 : 32 : 32 : 32 = 104 bits

Task 1
Question: Why is a move long instruction used to load R0? Answer: processor uses a
32bit address.

Question: Where and how are the data value 0 – 20 stored in memory? Answer: data
starts at memory location 0x11 and is stored as 16bit values i.e. takes up two memory
locations. Update: running the 'same' code this year the address was 0x0E? Not sure
why there would be a difference, will investigate.

Question: What will the values in R0 and R1 be when the program finishes, is this
result correct? Answer: when first powered up R1=0, therefore, add performs the
same function as move / input data from memory.

R0 = 11 R1 = 800

R1 may not be the result you were expecting. This is caused by the offset 15,
misaligned access, 17 + 15 = 32 (0x20), accessing the wrong low and high bytes. This
is illustrated when the offset is changed to 16 it now correctly loads the value 8 i.e.

 Mike Freeman 27/02/2024

Introduction to Computer Architectures 2

reads the low byte from address 0x21 and the high byte from 0x22, a little Endian
data format.

Task 2
PicoBlaze needs three instructions

Input SF, 19
Add SF, 0A
Output SF, 19

VAX needs only one instruction

 Mike Freeman 27/02/2024

Introduction to Computer Architectures 3

Task 3

VAX : IC = 3 + 2× 16 + 1 = 36
PicoBlaze: IC = 3 + 11 × 16 + 1 = 180

Advantages: less instructions, lower clock speeds, less power (maybe)
Disadvantage: more hardware, increased cost, more power (maybe)

Task 4
Finds the first space character i.e. the end of the first word

 Mike Freeman 27/02/2024

Introduction to Computer Architectures 4

Additional Task 1
use MATCHC: find substring within character string, very easy, BUT, can’t seem to
get this instruction to do what is says it will do, maybe ive misunderstood the
instruction or how it should be used. Anyway solution B is below. This is a little bit
more complex, I think there should be a nicer solution, definitely a little
rushed/hacked together, if anyone comes up with a nicer solution do email me.

.text
main: .word 0

movl $str, r5 #load string pointer
movl $key, r6 #load key pointer
movl $STR_LENGTH, r7 #load string length

loop:
locc $SPACE, r7, (r5) #find space in string
subw3 r0, r7, r8 #calc location from start

cmpw $KEY_LENGTH, r8 #is substring the same size as key
beql test #yes, test

update:
addl3 r5, r8, r5 #move pointer
addl3 $1, r5, r5
subl3 r8, r7, r7 #reduce length
bleq finish
jmp loop

test:
cmpc3 $KEY_LENGTH, (r6), (r5) #are the two strings equal?
beql found #yes print position
jmp update #no loop

found:
 pushl r5 #print address to screen
 pushal message
 calls $2, .printf

jmp update #loop

finish:
halt

.set SPACE, 0x20

.set STR_LENGTH, 33

.set KEY_LENGTH, 3

.data
str: .asciz "abcd ef ghi jklm nop qrst uvwx yz"
key: .asciz "nop"
message: .asciz "Match: %d\n"

 Mike Freeman 27/02/2024

	Answers ICAR Software Laboratory : VAX
	Task 1
	Task 2
	Task 3
	Task 4
	Additional Task 1

