
Introduction to Computer Architectures 1

ICAR Software Laboratory : VAX
The aim of this lab is to introduce the VAX-11/780 computer - a Virtual Address
eXtension to the PDP-11 family of computers. The VAX-11/780 can be classified as a
Complex Instruction Set Computer (CISC), dating from the 1970’s – 1980’s. At this
time computer memory was slow and expensive, therefore code generation and code
density were important design considerations in its development.

“A major goal of the VAX-11 instruction set was to provide for effective compiler
generated code. Four decisions helped to realize this goal:

1) A very regular and consistent treatment of operators.
2) An avoidance of instructions unlikely to be generated by a compiler.
3) Inclusions of several forms of common operators.
4) Replacement of common instruction sequences with single instructions.”

William Strecker 1978

To highlight the advantages of a CISC instruction set the VAX-11/780 will be
compared to the PicoBlaze processor used in the previous lab i.e. a RISC like
processor. To start the VAX11/78 instruction set simulator (ISS) select:

 -> VAX11Simulator

Note, the original software and additional documentation can be downloaded from:

http://softlab-pro-web.technion.ac.il/projects/VAX11_Simulator/html/UserGuide.htm

The VAX11/780 is a 32-bit architecture i.e. 32-bit wide address bus, data bus and
registers. There are 16 registers, r0, r1, ..., r15, however, registers r12 to
r15 are system registers i.e. used by the processor for the program counter, stack
pointer etc, so should not be used by the programmer. An instruction's operation field
defines the instruction’s function e.g. Add. An instruction’s data type is assigned a
single letter label, as shown in figure 1.

Number of Bits Data type Name Label
8 Integer Byte B
16 Integer Word W
32 Integer Long word L
32 Floating point Single precision F_floating F
64 Integer Quad word Q
64 Floating point Double precision D_floating D
8n Character string Character C

Figure 1: VAX11/78 data types

The VAX11/780 has a standard assembler opcode syntax, containing three fields:

<operation> <data type> <2 / 3>

Mike Freeman 27/02/2024

http://softlab-pro-web.technion.ac.il/projects/VAX11_Simulator/html/UserGuide.htm

Introduction to Computer Architectures 2

The final field defines the number of operands in the instruction. A ‘2’ indicates that
the last operand is a source and destination i.e. similar to the PicoBlaze. A ‘3’
indicates separate source and destination operands. Examples of both instruction
formats are shown below (immediate and register addressing modes):

Addb2 R1, R0 ; R0 <= R1 + R0
Addb3 R1, R2, R3 ; R3 <= R2 + R1
Subw2 $100, R1 ; R1 <= R1 - 100

Note, the destination operand is specified last in the instruction.

Questions: when reading an instruction from memory what is the advantage of
specifying the destination register last? Why could an Addb2 instruction execute
faster than an Addb3 instruction? What is the advantage / disadvantage of an
instruction set that allows the numbers of operands to be varied i.e. 2 or 3 operand
formats?

The VAX11/780 is a good example of a CISC, supporting a large number of
instructions and addressing modes, as shown in figure 3. Unlike the PicoBlaze almost
any addressing mode can be used to specify the location of each operand e.g.
memory, register or constant. Example:

addl3 15(r2),(r3)[r4], r1 ;3 operand Long word ADD

Figure 2: complex instruction

This instruction fetches two operands from memory. The first uses the displacement
addressing mode: 15(r2). This adds the constant 15 to the base address stored in
register r2. The second operand uses the indexed addressing mode: (r3)[r4]. Here
the base address is stored in register r3, offset by the value stored in r4. This offset
is multiplied by the data type size, in bytes e.g. long = 32bit, the multiplier = 4 (data
type dependent). In the above example if r4=2 the offset would be 8 (memory is byte
addressable).

Operand Addressing
mode

Syntax Example Description

Immediate $value $100 Constant 100 (hex)
Absolute *$address *$100 Memory[100]
Register rn r3 Resister R3
Register deferred (rn) r3 Memory[r3]
Displacement Offset(rn) 100(r3) Memory[r3 + 100]
Deferred displacement *Offset(rn) *100(r3) Memory[Memory [r3 + 100]]
Indexed (rn)[rm] (r3)[r4] Memory[r3 + r4 × d]
Autoincrement (rn)+ (r3)+ Memory[r3]; r3 = r3 + d
Autodecrement – (rn) –(r3) r3 = r3 – d ; Memory[r3]

Figure 3: VAX11/78 addressing modes

Questions: assuming that the opcode field is 8bits long and constants use the word

Mike Freeman 27/02/2024

Introduction to Computer Architectures 3

data type (refer to figure 1), how many bits will be required to encode the addl3
instruction shown in figure 2? If operands can be either register, memory, or
constants, what is the maximum and minimum number of bits required to represent
this instruction?

Questions: the example shown in figure 2 uses indexed addressing to access one of its
operands i.e. two registers: base address(r3)and offset [r4], where the offset value
is data type dependent:

accessed_memory_location = r3 + (r4 × d)

If the instruction data type is changed from addl3 to addw3 and the base register is
100 with a offset of 2 what memory location will be accessed?

A full description of the instructions supported in the ISS can be found by left
clicking on the pulldown:

Help -> Contents -> Vax-11 Opcodes

for more information on the instructions in the previous examples expand this folder
and select the relevant instruction, as shown in figure 4.

IMPORTANT: for security reasons(?) the help menu may not work from a network
drive, therefore, copy the file VAX11Simulator.chm from :

T:\Computer Science\Apps\VAX11Simulator

to C:\temp, then double click on this file to read the help menu shown in figure 4.

Figure 4: Opcode syntax

Mike Freeman 27/02/2024

Introduction to Computer Architectures 4

Task 1
Start the VAX11/78 simulator (ISS), then within the main textbox enter the program
shown in figure 5. The VAX11/78 uses a Von-Neumann architecture, therefore the
assembler directives .text and .data are used to define where instructions and
data are stored in memory. Labels must end with a ‘:’, all values are decimal, for a
hexadecimal numbers prefix with 0x. Data can be embedded within the program
using the .word assembler directive (16bit), for more information on these
commands refer to the Assembler’s Directives section within the help menu.

Figure 5: Test program

Note, your program must always start with the .word 0 command, this pads the
start of the program such that the computer starts at the first instruction. To compile
this program left click on the Compile icon , or the pulldown:

Build -> Compile

any errors will be displayed in the task list, in the bottom panel. To simulate this
program left click on the step icon , or the pulldown:

Debug -> Step

this will launch the ISS as shown in figure 6, the next instruction to be simulated is
highlighted in yellow. Single step through this program by clicking on the step icon or
the above pulldown menu.

As the program executes, register and memory values will be updated in the right
hand side and bottom panels. To restart the program click on the Restart Program
icon , or the pulldown:

Debug -> Restart Program

Questions: Why is a move long instruction used to load R0? Hint, how will this

Mike Freeman 27/02/2024

Introduction to Computer Architectures 5

data be used? The operand $value represents the address of a symbolic label.

Where and how are the data values 1 – 20 stored in memory? How many bytes
(memory locations) are used to store each number?

Hint, this data is stored at address 0x0E onwards, as shown in figure 6 (register R0).
What data type is used? Try changing the .word assembler directive to .byte and
reload the code, what has happened to the values stored in memory?

If the intention of this program was to read the 15th element from the list of numbers,
why is the result incorrect? Ensure you understand these questions before you
proceed. The value 0x900 is not correct, can you see why?

Hint: the operand 15(r0) should point to the first byte of a number stored in
memory e.g. data value 01, 02, 03 etc. Data is stored in memory using the .word
data type i.e. a 16bit representation. Each number will be allocated two memory
locations (two bytes) of storage. What would happen if the address generated is
incorrect and points into the ‘middle’ of a number? What order are bytes read from
memory for the .word data type, LSB or MSB first?

Edit your program, replacing the displacement offset 15 with the value 28 i.e. the
offset needed to really access the 15th element from the list. Re-compile and run this
program. Ensure program produce the correct result.

Figure 6: Simulator (data block highlighted in red)

Mike Freeman 27/02/2024

Introduction to Computer Architectures 6

Task 2
Write a PicoBlaze program to add the constant 0x10 to the external memory location
0x25. The address 0x25 can be hard-coded as a constant within the program. How
many instructions are required? Now write the same program in the VAX11/78
instruction set.

Hint, you should be able to perform the same function on the VAX11/78 in one
instruction using the Add instruction combined with absolute and immediate
addressing modes, similar to that shown in figure 2. Refer to figure 3 for addressing
mode syntax. Note, use ‘0x’ for hex, don't forget the ‘*’ for an address.

Immediate $value $100 Constant 100 (hex)
Absolute *$address *$100 Memory[100]

Task 3
To illustrate the power of a CISC instruction set we shall use the vector addition
algorithm from the previous lab. This program performs a vector addition, adding
together 16 pairs of data values stored in external memory, as shown in figures 7 and
8. From the previous laboratory it was calculated that the instruction count (IC) for
this program on the PicoBlaze processor was :

IC = 3 + 11×16 + 1 = 180 instructions

Now write a VAX11/78 program to implement the functionality shown in figure 7.

Remember when writing CISC programs we are looking to replace groups of simple
instructions with a single complex instruction, otherwise the resultant code will not
use the CISC's specialised hardware and therefore, will take longer to run. To
implement this program you may wish to consider using the instructions CLR and
ACB. For more information on how to use them and examples of their use refer to the
help menu (.chm file)

Note, data values use the .Byte data type. In this computer, data can not be stored at
address 0x00 i.e. its a Von-Neumann not a Harvard architecture, therefore, use labels
to define read and write start addresses within memory i.e. define a .data region
after your program as shown in figure 6, then define and use symbolic labels similar
to $value.

Hint, you should be able to implement this program using six instructions, three to
initialise variables, two in the main loop and one to stop the program. You can also
use the counter register in the ACB instruction as your index register i.e. add two to
the counter each loop.

Assuming that the PicoBlaze and the VAX11/78 use the same clock speed what is the
speedup of the VAX11/78 compared to the PicoBlaze processor. What are the
possible advantages / disadvantage of the VAX11/78 processor compared to the
PicoBlaze processor? If you were unable to find a solution refer to Appendix A.

Mike Freeman 27/02/2024

Introduction to Computer Architectures 7

Figure 7: Vector addition flowchart
instruction fun

; RAM
#EQU ram_src_addr, 0x00 ; read address
#EQU ram_des_addr, 0x20 ; write address

main:
 load S0, ram_src_addr ; set source / destination
 load S1, ram_des_addr ;
 load S2, 00 ; zero loop counter

loop:
 rdprt S3, (S0) ; read par 0
 add S0, 01 ; inc src ptr
 rdprt S4, (S0) ; read par 1
 add S0, 01 ; inc src ptr
 add S4, S3 ; result = par 0 + par 1
 wrprt S4, (S1) ; store at des ptr
 add S1, 01 ; inc des ptr
 add S2, 01 ; inc loop counter

 load S3, S2 ; copy count
 sub S3, 10 ; have 16 values been processed
 jump NZ, loop

trap:
 jump trap

Figure 8: Vector addition PicoBlaze program

Mike Freeman 27/02/2024

Introduction to Computer Architectures 8

.text
main: .word 0
 locc $SPACE, $LENGTH, str

subw3 r0, $LENGTH, r0
 pushl r0
 pushal message
 calls $2, .printf

finish:
halt

.set SPACE, 0x20

.set LENGTH, 33

.data
str: .asciz "abcd ef ghi jklm nop qrst uvwx yz"
message: .asciz "First word is %d characters long\n"

Figure 9: application specific instructions

Task 5
In addition to complex instructions and addressing modes the VAX11/78 also
supported application specific instructions e.g. character processing.

CMPC : compare two character strings
MOVC : move character string
LOCC : locate character within a string
MATCHC : find substring within character string

The VAX simulator also supports system calls to standard-in and standard-out i.e. the
keyboard and monitor (console window). To write characters to the display the
printf system subroutine is called, data to be displayed is pushed onto the
processor’s data stack in reverse order, as shown in figure 9. A full description of the
instructions, assembler directives and system calls can be found in the help menu by
left clicking on:

Help -> Contents -> Vax-11 Opcodes
 -> Assembler’s directives
 -> System Calls

Enter the program in figure 9, single step through these instruction, what function
does this program perform? Refer to the Help menu for more information on each
instruction and assembler directive.

Hint, the ASCII code for the space character is 0x20. Try removing the space
between the d and e characters.

Task 6
Modify the previous program to search for a user defined sub-string i.e. the string
labelled 'key', as shown in figure 10. If a match is found print out the locations of
each match i.e. character offset from the start of the string. If no match is found print
out an error message.

Mike Freeman 27/02/2024

Introduction to Computer Architectures 9

.set SPACE, 0x20

.set LENGTH, 33

.data
str: .asciz "abcd ef ghi jklm nop qrst uvwx yz"
key: .asciz "nop"
message: .asciz "Match: %d\n"

Figure 10: application specific instructions

Hint, you may wish to look at the MATCHC instruction. There may be a software bug
in the simulator for this instruction, but do give it a try. Alternatively, you could use
the CMPC and LOCC instructions. As with all CISC programs try to get as much
functionality as possible into each instruction.

Appendix A

Figure A1: solution for task 3

Mike Freeman 27/02/2024

	ICAR Software Laboratory : VAX
	Task 1
	Task 2
	Task 3
	Task 5
	Task 6
	Appendix A

