
Systems and Devices 1 1

SYS1 Laboratory 2 : Logic gates – hardwired controllers
The aim of this lab is to demonstrate the operation of basic logic gates, their functions
and how they can be combined to implement different functions i.e. the fundamental
building blocks of any computer. Each time a computer executes an instruction it has
to “reconfigure” its hardware, selecting the correct data paths to access the required
operands (data) and functional units to process this data. These control circuits are
commonly implemented using a hardwired controller i.e. a combinatorial logic circuit
specifically designed for a particular instruction set. At the end of this practical you
will understand how to:

• Define combinatorial logic circuits using schematic capture entry.
• Design simple hardwired controllers from high level pseudo code descriptions.
• Implement combinatorial logic circuits to process input sensor data to control

output actuators.
• Understand how multiplexer components are used within a processor.

Figure 1 : Bug trap

The University is overrun with cockroaches (bugs) you are required to design a
hardwired controller for an automatic bug trap. The bug trap hardware has already
been designed as shown in figure 1. This hardware has three main components :

1) Net: a high powered servo motor connected to a square net via a
connecting arm. When energised the servo pushes the net down into the
closed position, trapping the cockroach. Otherwise it lifts the net up into
the open position.

2) Base: this section contains two infra-red LED (illuminated) sensor
modules i.e. front and rear sensor, that detect when a cockroach is in the
trap. These are interfaced to the FPGA via an I2C GPIO expander.

3) Control panel: user console containing a RED status LED, a toggle switch
and a RED push switch.

To allow you to control this hardware an ISE project called bug_trap_v1 has been
created and can be downloaded from the module's VLE page. Using your preferred
web browser download this zip file to C:\Users\<USER NAME>. Right click on
this file selecting ‘Extract all…’ to unzip it. To start this practical click on the start
button and select the ISE project navigator.

 -> Xilinx 64-bit Project Navigator

 Mike Freeman 16/02/24

1 2 3

Systems and Devices 1 2

This may take a few seconds (a minute when the network is busy) to start. To open
this project left click on the File pull down within the project navigator window :

File -> Open Project

Then browse to the directory where you unzipped this project and select :
bug_trap_v1.xise. Next, within the Hierarchy window double click on the top
level schematic bug_trap.sch, as shown below:

This will open the schematic shown in figure 2.

Figure 2 : top level schematic, bug_trap.sch

 Mike Freeman 16/02/24

Systems and Devices 1 3

This schematic is made up of three components:

• Bug_Trap_Controller : a combinatorial logic circuit that you will be
incrementally developing during this laboratory, processing the input sensor
data to control output actuators. This component's interface contains the
signals:
◦ Sensor 1 : front sensor, infra-red module 1=empty, 0=bug present.
◦ Sensor 2 : rear sensor, infra-red module 1=empty, 0=bug present.
◦ Mode : toggle switch, 0=down position, 1=up position.
◦ Fire : push switch, 0=pressed, 1=not pressed
◦ OSC : clock oscillator, frequency approximately 1Hz
◦ Servo : servo motor controlling net position, 0=up, 1=down
◦ LED : status display, 0=off, 1=on

• Virtual_Wires : the seven signals controlling the bug trap (listed above) are not
directly connected to the FPGA board as individual wires, rather signals are
transferred between the FPGA board and the bug trap hardware using a serial
Inter IC Communications (I2C) Bus, significantly reducing the number of
wires in the white connecting cable. Note, the reason for this abstraction was
due to limited IO lines, this is not visible to the bug trap controller. In addition
to implementing this communications link this component also updates the
seven segment LED display with the status of these signals.

• Clock_Divider : the FPGA board has an on board oscillator producing a
10MHz square wave clock. This is divided down to a slower frequency to
produce a 1Hz clock on the CLK_OUT (OSC) pin. This signal will be used
later to control the servo motor's position.

To test that the bug trap and the FPGA board are working correctly a simple controller
has already been implemented. To open this schematic single left click on the
Bug_Trap_Controller component, this will highlight it RED, then on the side
toolbar click on the “push into” symbol icon:

This will open the Bug_Trap_Controller schematic shown in figure 3. In this
circuit the RED push switch is connected through an inverter to the servo and the
front panel LED. When this switch is pressed a logic 0 is generated on the FIRE
signal, this is inverted to produce a logic 1 which will move the servo into the down
position and illuminate the RED LED.

Figure 3 : top level schematic, bug_trap.sch

 Mike Freeman 16/02/24

Systems and Devices 1 4

Left click on the top level schematic (highlight), then double click on “Generate
Programming File” to produce the configuration bit file, as shown in figure 4. Plug in
the power supply module and connect the USB cable, then configure the FPGA as
described in Laboratory script 1, page 10, but using the bug_trap.bit file.

Figure 4 : generate programming file.

When configured the seven segment LED display will count down from 9 to 0, then
the servo arm will initialise into the UP position.

Task : press the RED push switch on the front panel, if the hardware is connected
correctly the net will move into the down position and the LED will be illuminated.
The seven segment LED display on the interface PCB should also change as the
sensors and buttons are activated.

Figure 5 : bug trap operation

Task 1
The data transferred across the I2C bus can be viewed using the oscilloscope. Turn on
the scope as described in the Laboratory 1 and connect it to the test point shown in
figure 6. Set the vertical voltage range to 2V per division and the horizontal time base
to 50us per division, a typical packet transfer is shown in figure 7.

 Mike Freeman 16/02/24

You may need
to adjust the net
position. Use a
small Phillips
screwdriver to
stop servo
rotating

Systems and Devices 1 5

Tip, if you do not see the waveform in figure 7 try pressing the ‘Default Setup’
and ‘Auto-scale’ buttons. You will need to reposition the trace using the small
horizontal position knob.

Figure 6 : scope test points.

Figure 7 : I2C data packets

These I2C data packets are used by the FPGA to read the state of the various input
sensors and to control the output actuators.

Task : how often are these packets transferred i.e. how quickly is the bug trap
hardware updated? Tip, you will need to increase the timebase on the scope (ms).

Note, you should see quick changes in the data packet bit values when the push button
is pressed (not persistent). We will not be using the I2C bus directly in these
laboratories, but we will be looking at different examples of serial data buses in later
lectures i.e. buses that transfer data one bit at a time across a single wire. If you would
like more background information on the I2C bus a pdf document is available on the
VLE in files.zip.

From these packets the state of the four input sensors is read and displayed on the
seven segment display as a hexadecimal value, as shown in figure 8.

Task : what bit of this four-bit value is each input sensor connected to? Activate each
infra-red sensor and switch in turn, record the displayed hexadecimal values
(base 16), from this you can determine what bit represents what sensor.

 Mike Freeman 16/02/24

Systems and Devices 1 6

 Input sensor state Output actuator state

Figure 8 : input and output states

Hint, the RED push button is connected to bit 0. As previously discussed when
pressed this bit will be set to a logic zero. Therefore, depending on the state of the
other three bits the display will be set to the value 0, 2, 4, 6, 8, A, C or E and when it
is not pressed the value 1, 3, 5, 7, 9, B, D, or F. A hexadecimal to binary conversion
table is shown in figure 9. If you are really, really, really stuck, refer to Appendix A.

IMPORTANT : make you understand this before proceeding.

Note, if the infra-red sensors do not change the state of the LED display you will need
adjusted their sensitivity. This can be done by turning the blue variable resistor on
each module using a small screwdriver (desk draw). For more information refer to
Appendix B. If you are not sure how to do this do ask for assistance.

Figure 9 : Decimal to Hexadecimal conversion tables

Task 2
The current version of the Bug_Trap_Controller implements the following
control rules / pseudo code, only using the RED push switch i.e. the FIRE button:

DESCRIPTION LOGIC
IF FIRE SERVO = NOT FIRE
THEN LED = NOT FIRE

CLOSE TRAP
TURN ON LED

ELSE
OPEN TRAP
TURN OFF LED

 Mike Freeman 16/02/24

Systems and Devices 1 7

Remember, the FIRE switch is active LOW, the SERVO and LED are active HIGH. To
allow the trap to work at night i.e. without human assistance, the front and back
infra-red sensors (on base) need to be incorporated into these control rules.

In the Bug_Trap_Controller component SENSOR_1 is the rear sensor and
SENSOR_2 is the front sensor as shown in figure 10. The control rules can be
rewritten as:

DESCRIPTION LOGIC
IF SENSOR_1 OR SENSOR_2 SERVO = ((NOT SENSOR_1) OR
THEN (NOT SENSOR_2))

CLOSE TRAP
TURN ON LED LED = ((NOT SENSOR_1) OR

ELSE (NOT SENSOR_2))
OPEN TRAP
TURN OFF LED

 Rear Sensor Front Sensor

Figure 10 : front and rear infra-red sensors

These control rules could be implemented using an OR gate, as shown in figure 11.

Task : update the schematic bug_trap_controller.sch to match the new
circuit diagram shown in figure 11. Tip, you will need to delete some of the
connecting wires and add an additional INV and a OR2 component from the LOGIC
component category.

Figure 11 : front and rear infra-red sensors

 Mike Freeman 16/02/24

Systems and Devices 1 8

This circuit can also be represented as the truth table shown in figure 12.

Sensor 1 Sensor 2 NOT Sensor 1 NOT Sensor 2 Servo LED
0 0 1 1 1 1
0 1 1 0 1 1
1 0 0 1 1 1
1 1 0 0 0 0

Figure 12 : truth table

Task : what single logic gate can be used to implement the same function i.e. replace
the two INV and OR2 components?

When you have finished entering this circuit left click on the save icon in the top
left toolbar in the main window.

Note, logic gates have inputs (on the left) and outputs (on the right) as shown in figure
13. When connecting these logic gates together remember these following rules.

• Input connected to an Input -> Ok, but nothing is producing a signal
• Output connected to an Input -> Good, signals processed by a logic gate
• Output connected to an Output -> VERY bad, two outputs could try to drive

 different signals onto the same wire.

Figure 13: AND gate, inputs and outputs

Figure 14: automatic triggering

To upload this new design into the FPGA double click on “Generate Programming
File” to produce a new configuration bit file, then configure the FPGA as described in
Laboratory script 1, using the bug_trap.bit file. If the hardware is configured
correctly you should now be able to automatically capture your bug, as shown in
figure 14.

 Mike Freeman 16/02/24

INPUT

INPUT

OUTPUT

LOGIC GATE

Systems and Devices 1 9

Tip, if it seems that the FPGA has not been updated with the new control rules click
on Project -> Cleanup Project Files and regenerate the bit file.

Task 3
To combine the automatic and manual control rules we need to include the toggle
switch to select which set of rules should be active i.e. a MODE switch. The selected
mode will be indicated by the LED:

• MODE=0 : manual mode, LED turned on, net controlled by the push button
• MODE=1 : automatic mode, LED turned off, net controlled by either the front

or the rear infra-red sensor.

These combined control rules can be expressed as:

DESCRIPTION
IF MANUAL
THEN
 TURN ON LED
 IF FIRE
 CLOSE TRAP
 ELSE
 OPEN TRAP
ELSE
 TURN OFF LED
 IF SENSOR_1 OR SENSOR_2
 CLOSE TRAP
 ELSE
 OPEN TRAP

These two sets of rules could be rephrased, combined as shown below:

DESCRIPTION
IF ((MANUAL AND FIRE) OR
 (AUTOMATIC AND (SENSOR_1 OR SENSOR_2)))
THEN
 CLOSE TRAP
ELSE
 OPEN TRAP

IF MANUAL
THEN
 TURN ON LED
ELSE
 TURN OFF LED

These control rules can also be represented as the truth table shown in figure 15.
When MODE=0 i.e. manual mode, only the FIRE button will activate the trap. When
MODE=1 i.e. automatic mode, either SENSOR will activate the trap.

Note, remember these input sensors and switches are active when they produce a
logic 0 and inactive when they produce a logic 1 i.e. we need INV.

 Mike Freeman 16/02/24

Systems and Devices 1 10

Task : convert the above control rules into a logic circuit.

Tip, in the previous description each bracket term () is the output of a logic gate.
Knowing this break the descriptions below into a series of logic gate circuits, then
assemble them into the complete circuit. This circuit should implement the truth table
shown in figure 15.

W = NOT SENSOR_1 OR NOT SENSOR_2 AUTOMATIC = MODE
X = AUTOMATIC AND W MANUAL = NOT MODE
Y = MANUAL AND NOT FIRE
Z = Y OR X

Mode Sensor 1 Sensor 2 Fire Servo LED
0 0 0 0 1 1
0 0 0 1 0 1
0 0 1 0 1 1
0 0 1 1 0 1
0 1 0 0 1 1
0 1 0 1 0 1
0 1 1 0 1 1
0 1 1 1 0 1
1 0 0 0 1 0
1 0 0 1 1 0
1 0 1 0 1 0
1 0 1 1 1 0
1 1 0 0 1 0
1 1 0 1 1 0
1 1 1 0 0 0
1 1 1 1 0 0

Figure 15: truth table for controller with automatic and manual modes

Task 4
If all has gone well you should have a circuit comparable to that shown in Appendix
C. Note, this is not the only possible solution.

Task : update the schematic bug_trap_controller.sch to match your new
circuit diagram. Double click on “Generate Programming File” to produce the
configuration bit file. Next. configure the FPGA as described in Laboratory script 1,

 Mike Freeman 16/02/24

INPUTS OUTPUTS

Systems and Devices 1 11

using the bug_trap.bit file. Test that the circuit performs the specified control
rules as described in figure 15.

Task 5
At the heart of the previous controller is a multiplexer, selecting between the manual
and automatic control rules, as shown in figure 16. This is a key building block of any
CPU.

Figure 16: multiplexer

This higher level functionality can be implemented as a new mux_2 component i.e.
rather than keep drawing the circuit in figure 16, we can use a multiplexer symbol.

A new ISE project called bug_trap_v2 has been created using this new component
and can be downloaded from the module's VLE page. Using your preferred web
browser download this zip file to C:\Users\<USER NAME>. Right click on this
file selecting ‘Extract all…’ to unzip it.

Figure 17: bug_trap_controller schematic – missing components.

Open this new project, then open the Bug_Trap_Controller schematic shown in
figure 17. This example illustrates what happen when a schematic containing a
missing component i.e. mux_2.

IMPORTANT : never click OK, always close the ‘Open Schematic File Errors’ pop
up window by clicking on the icon. Then close the schematic.

 Mike Freeman 16/02/24

SEL Y
 0 A
 1 B

Systems and Devices 1 12

The missing mux_2 component is defined by its schematic (.sch) and associated
circuit symbol (.sym), these can be downloaded from the VLE.

IMPORTANT, symbol files (.sym) must always be stored in the top level project
directory i.e. the directory containing the project file (.xise).

Using your preferred web browser download from the VLE the file: files.zip.
Unzip this file and copy the files mux_2.sch and mux_2.sym to your project
directory.

Before you can use this new component you must first add this component to the ISE
project. To add this component to the project left click on:

Project -> Add Source

This will open the ‘Add Source Wizard’, browse to the project directory and select the
file mux_2.sch, then click Open. Then click Ok to confirm.

Re-open the Bug_Trap_Controller schematic it should now look like figure 18.

Figure 18: bug_trap_controller schematic

If you need to add a new mux_2 component to the schematic left click on the “Add
Symbol” icon , within the Categories box you will see the current project
directory listed, an example (my laptop) is shown in figure 18, this will be machine
dependent. Select the mux_2 component and add it to the schematic, as previously
described.

Figure 19: mux_2 symbol (left), schematic (right)

 Mike Freeman 16/02/24

Systems and Devices 1 13

To see the mux_2 component’s schematic left click on the mux_2 symbol, then click
on the Push into Symbol icon . This will open the mux_2.sch file. To return to
the higher level schematic click on the Pop to Calling Schematic icon .

DESCRIPTION LOGIC
IF (AUTOMATIC) MANUAL = NOT MODE
THEN AUTOMATIC = MODE
 TURN OFF LED
 IF (LARGE) LARGE = BOTH SENSORS
 THEN ARE ZERO
 STAMP ON BUG
 ELSIF (SMALL) SMALL = ONLY ONE
 THEN SENSOR IS ZERO
 CLOSE TRAP
 ELSE FIRE = ZERO WHEN
 OPEN TRAP PRESSED
ELSE
 TURN ON LED OSC = LOGIC 1 FOR 0.5s
 IF (FIRE) LOGIC 0 FOR 0.5s
 THEN
 CLOSE TRAP
 ELSE
 OPEN TRAP

Figure 20: multiplexer based implementation

A new breed of heavy weight cockroaches have been discovered. These are longer and
more powerful than your typical bug. If caught these cockroaches can push their way
through the trap i.e. as we all know cockroaches can not walk backwards :).
Therefore, the bug trap controller circuit must be updated to implement the following
rules:

• If the cockroach is small i.e. only covers one of the sensors, the net should
hold the cockroach in the trap (to minimize the mess).

• If the cockroach is large i.e. covers both of the sensors, the net should
repeatedly stamp on the bug to ensure it does not “escape”. The 1Hz OSC
clock input has been provided to help produce this behavior.

 Mike Freeman 16/02/24

?

?

a

b
c

d

Systems and Devices 1 14

These rules can be implemented in a number of different ways. However, you could
consider each decision point i.e. IF statement, shown in figure 20 as an input to a
multiplexer.

Note, the symbols for constant logic 1 (VCC) and a constant logic 0 (GND) can be
found in the General symbol category.

Multiplexer mux_2a controls the LED. The MODE signal from the toggle switch
selecting a constant logic 1 (VCC) when in manual mode (MODE=0) and a constant
logic 0 (GND) when in automatic mode (MODE=1).

Multiplexers mux_2b and mux_2c implement the automatic control rules. If the
cockroach is LARGE input B of mux_2c is selected, else input A. This input is
connected to the output of mux_2b, selecting between the SMALL and no bug
present rules.

Multiplexer mux_2d controls the servo, selecting between the manual control rules
on its A input and the automatic control rules on its B input.

Task : edit the schematic shown in figure 20 replacing the boxes with the correct
logic gates / circuits to implement the required control rules.

Tip, you need to select the correct logic gates to generate these control signals:

• LARGE : produce a logic 1 when the bug triggers both sensors at the same
time, else a logic 0.

• SMALL : produce a logic 1 when either sensor is triggered, but not if both are
triggered, else a logic 0.

To help simplify the logic design you may want to invert the input sensors and switch
signals to make them active high, such that a sensor produces a logic 1 when a bug is
in the trap rather than a logic 0. The OSC input produces a square wave i.e. a signal
that repeatedly alternates between a logical 1 and a logical 0. You can use this signal
to repeatedly squash (stamps on) the bug instead of just holding it.

Figure 21: launching simulation

To verify the operation of the bug controller schematic a VHDL test bench

 Mike Freeman 16/02/24

?

Make sure
the TB file
is selected

Systems and Devices 1 15

bug_trap_tb.vhd has been added to this project.

Left click on the ‘Design’ tab (project navigator window, bottom left) to display
project ‘sources’. Click on the ‘Simulation’ radio button, ensuring ‘Behavioral’
simulation is selected, as shown in figure 21.

Left click (highlight) on the testbench file bug_trap_TB, this will update the
‘Processes for’ source window, then double left click on ‘Simulate Behavioural
Model’ to launch the simulation.

The VHDL simulator allows the operation of the circuit to be checked by examining
its waveform timing diagram. Update the simulation time to 4us, then click on the
Run simulation for icon. If operating correctly the Servo and LED signals should
match those shown in figure 23.

IMPORTANT, make sure you understand what this wave diagram is showing you as
we will be using these types of simulations in most labs.

Figure 22: simulation controls

Figure 23: multiplexer based simulation

To upload this new design into the FPGA double click on “Generate Programming
File” to produce a new configuration bit file, then configure the FPGA as described in
Laboratory script 1, using the bug_trap.bit file. Download this into the FPGA to
confirm your solution is working correctly.

 Mike Freeman 16/02/24

Fire Button
Pressed

Manual
Mode

Automatic
Mode

Single
Sensor

Both
Sensors

Servo
Hold

Servo
Hold

Servo
Stamp

Restart
simulation

Run simulation for
specified time

 Simulation
time

Systems and Devices 1 16

Summary
The multiplexer (MUX) is one of the main building blocks found within any
computer, an electronic “switch” used to route data from one point in a processor to
another. Within the bug trap circuit it is used to select either the manual or automatic
control logic, as shown in figure 24.

Figure 24: multiplexer
To simplify circuit diagrams a multiplexer is commonly represented using a
distinctive trapezoid shaped component symbol. The operation of this multiplexer is
controlled by its select (SEL) signal. This signal and its inverse are combined with
AND gates, as shown in figure 16, therefore, one AND gate will always have a logic 0
on its input allowing the SEL signal to mask one multiplexer input and select data
from the other, as shown by these logical relationships:

A AND 0 = 0
A AND 1 = A

The final OR gate acts as a joining function merging the outputs of the two AND gates
onto a single output. As only a single AND gate can produce a logical 1 at any time,
this simple circuit can select either input A or input B to drive its output Y. The truth
table of this two input multiplexer is shown in figure 25.

 SEL A B Y Description

 0 0 0 0 Select A
 0 0 1 0 Select A
 0 1 0 1 Select A
 0 1 1 1 Select B
 1 0 0 0 Select B
 1 0 1 1 Select B
 1 1 0 0 Select B
 1 1 1 1 Select B

Figure 25: Multiplexer truth table

The combination of control logic and multiplexers form the core of most computers
i.e. hardware circuits that can work out what each instruction should do and then
select the required data to be processed.

 Mike Freeman 16/02/24

Mode

Automatic
Logic

Manual
Logic

Servo

Servo = (IN0 AND NOT SEL)
 OR

 (IN0 AND SEL)

Systems and Devices 1 17

IMPORTANT, if your Xilinx project directory is on the C drive don't forget to copy
it to your home directory e.g. H drive, otherwise you may loose your work.

Appendix A : Inputs and Outputs

Sensors
Bit 0 : Push button (0=Pushed)
Bit 1 : Toggle Switch (0=Down / 1=Up)
Bit 2 : Front infra-red sensor (0=Bug)
Bit 3 : Back infra-red sensor (0=Bug)
Bit 4 - 7 : Not used

Actuators
Bit 0 : Servo (0=Up / 1=Down)
Bit 1 : LED (0=Off / 1=On)
Bit 2 - 7 : Not used

Appendix B : adjusting infra-red sensor sensitivity

Using a small Phillips screwdriver adjust the variable resistor shown in figure B1.
Rotating clockwise reduces sensor sensitivity. Rotating anticlockwise increases sensor
sensitivity.

Figure B1: infra-red sensor module

 Mike Freeman 16/02/24

Variable resistorPower LED

Triggered LED, ON=Object detected, OFF = Empty

Systems and Devices 1 18

Appendix C : Hardwired controller

Figure C1: hardwired controller schematic

 Mike Freeman 16/02/24

	SYS1 Laboratory 2 : Logic gates – hardwired controllers
	Task 1
	Task 2
	Task 3
	Task 4
	Task 5
	Summary

	Appendix A : Inputs and Outputs
	Sensors
	Actuators

	Appendix B : adjusting infra-red sensor sensitivity
	Appendix C : Hardwired controller

