Before we get started ...

e Did you manage to teleport Bob (file transfer)?
» Could you get my most excellent code working :)

e How did your research into TCP go?

» Implementing a reliable communications protocol is tricky,
need to consider all possible scenarios: lost / corrupt
packets, packets received out of order, re-transmission of
packets, fair usage of network bandwidth i.e. congestion
control ...

e Questions to consider :
» How does TCP implement a reliable connection?
» What are the differences between UDP and TCP?

Systems and Devices 2
(Network)
Lec 3b: Transport Layer

University of York : M Freeman 2024 University of York : M Freeman 2024

TCP

e Transmission Control Protocol
» RFC 793 :

0 16 31
» Created in 1981 one of the core internet protocols.
» TCP is a connection orientated protocol i.e. before an

application process can send data it must first perform a

handshake to ensure that a connection is possible

¢+ TCP is not an end-to-end protocol like circuit switching, it only existing
in the transport layer of the communicating hosts, not in lower layers
i.e. no reserved connections, “packets” can take different paths.

» TCP uses full duplex connections. If there is a connection
between process A and B, then we can send data A—B and
B—A at the “same” time.

» TCP implements a reliable, ordered, error-checked data

stream between two hosts i.e. retransmission.
University of York : M Freeman 2024

e TCP header, depending on option fields used can
vary from 20-60B (UDP uses 8B).

University of York : M Freeman 2024

tcpTX.py (~/Documents/SYS_ NET/Slides/LEC 03/Pyhton/d)

File Edit View Search Tools Documents Help

A8 % ~ > | %08 aQ

1 import socket
2 import time

3

4 TCP_IP = "192.168.0.254"
5 TCP_PORT = 8000

6 #TCP_PORT = 80

7 BUF_SIZE = 1024

8

9 sockTX = socket.socket(socket.AF_INET, socket.SOCK STREAM)

16 sockTX.connect((TCP_IP, TCP_PORT))

while True:
lowerCase = "hello world"
sockTX.send(lowerCase)
upperCase = sockTX.recv(BUF_SIZE)
print("TX:" + upperCase)
time.sleep(2)

except KeyboardInterrupt:
sockTX.close()

152.160.0.254 6 50128 - 6000 (ACK]
162.150.0.100 &6 8060 - s0128 (AcK] Se0-

Python v TabWidth: 4 tn1, Col1 INS

e [CP server: convert lower case string to upper case.

eration (0P), Tisestamps

P

» An echo function : single, multiple and continuous.

Desktop computer

TX Data: “hello world”

RX Data: “HELLO WORLD”
Length= 11 bytes

University of York : M Freeman 2024

STEP: 1

DEST: 8000, SRC: 50128, LEN: 11
SEQ: 0x5A076E13, ACK: 0x0A63E25D
Flags: PSH, ACK, Data: “hello world”

STEP: 2

DEST: 50128, SRC: 8000, LEN: 0
SEQ: 0x0A63E25D, ACK: 0x5A076E1E
Flags: ACK, Data: NONE

STEP: 3

DEST: 50128, SRC: 8000, LEN: 11
SEQ: 0x0A63E25D, ACK: 0x5A076E1E
Flags: PSH, ACK, Data: “HELLO WORLD”

DEST: 8000, SRC: 50128, LEN: 0
SEQ: 0x5A076E1E, ACK: 0x0A63E268
Flags: ACK, Data: NONE

RX Data: “hello world”
Length = 11 bytes

TX Data: “HELLO WORLD”

Three-way handshake

Desktop computer

Connection Request

STEP: 1

DEST: 8000, SRC: 50128, LEN: 0
SEQ: 0x5A076E12, ACK: 0x00000000
Flags: SYN, Data: NONE

STEP:2)

DEST: 50128, SRC: 8000, LEN: 0
SEQ: 0x0AG3E25C, ACK: 0x5A076E13
Flags: SYN, ACK, Data: NONE

Acknowledge
Allocates TCP buffers
& variables

STEP: 3

DEST: 8000, SRC: 50128, LEN: 0
SEQ: 0x5A076E13, ACK: 0x0AG63E25D
Flags: ACK, Data: NONE

Connection Granted
Allocates TCP buffers
& variables

e Jo initialise a TCP connection the two communicating

processes perform a three-way handshake.
University of York : M Freeman 2024

Desitop computer

Close

STEP: 1

DEST: 8000, SRC: 50128, LEN: 0
SEQ: 0xSA076E1E, ACK: 0x0A63E268
Flags: FIN, ACK

STEP: 2

DEST: 50128, SRC: 8000, LEN: 0
SEQ: 0x0A63E268, ACK: 0x5A076E1F
Flags: ACK, Data: NONE

STEP: 3

DEST: 50128, SRC: 8000, LEN: 0
SEQ: 0x0AG3E268, ACK: 0xSAO76ELF
Flags: FIN, ACK, Data: NONE

DEST: 8000, SRC: 50128, LEN: 0
SEQ: 0x5A076E1F, ACK: 0x0A63E269
Flags: ACK, Data: NONE

e Jo close a TCP connection client/server use the FIN flag

University of York : M Freeman 2024

e To transfer data the client uses the PSH flag
University of York : M Freeman 2024

Pause to consider ...

¢ To ensure reliable connections TCP adds additional
initialisation and acknowledgement segments. However,
these incur significant overheads i.e. time.

» To transfer the 10 characters UDP needs 1 segment, TCP
needs 9 segments. Therefore, when using TCP we normally
keep the link open and transfer multiple values across it.

e This highlights one of the main differences between TCP
(stream) vs UDP (message) from the programming point
of view i.e. how to separate out different values.

» UDP: send individual messages i.e. paired send / receive

» TCP: programmers responsibility to structure the data i.e.
either by using a fixed length packets or delimiters such as
newline characters.

University of York : M Freeman 2024

tepTX.py (-/Documents /SYS_NET/Slides/LEC_03/Pyhton/4)
File Edit View Search Tools Documents Help

D% ~v YO0, aQQ

afl WPHE @8

1 import socket
2 import time
3

4 TCP_1P

9 sockTX = socket.socket(socket.AF _INET, socket.SOCK STREAM)
10 sockTX.connect ((TCP_IP, TCP_PORT))
11
12 try:
while True:
lowerCase "hello world"
sockTX. sel lowerCase)
upperCase = sockTX.recv(BUF_SIZE)
print("TX:" + upperCase)
time.sleep(2)
except KeyboardInterrupt:
sockTX.close()

Python v TabWidth: 4~ Ln13,Coll NS .

e TCP server: convert lower case string to upper case.

» An echo function : single, multiple and continuous.
University of York : M Freeman 2024

e Q: reimplement the ppm image file (text file) transfer

Points to note ...

e Reliable data transfer is implemented using positive
acknowledgements and timers (discussed next).

e Establishing a TCP link takes time i.e. 3-way
handshake. If the client / servers are situated on
different continents this will result in significant delays.

e Therefore, web browsers will tend to keep open TCP
connection to avoid having to re-establish a link e.g.
HTTP communicates across TCP links, using:

» Non-Persistent : closed after each object is transferred.
» Persistent : multiple objects sent over the same link.

» HTTP1.1 : all connections assumed persistent, however, a
web server’s default time-out can be 5 — 15 sec.

University of York : M Freeman 2024

Programming Task

3
CREATOR: GIMP PNM Filter Version 1.1
80 50

problem (code on VLE) using TCP, that should be simple :).

» You will find this tricky. You need to think in terms of a stream
of data, rather than packets of data.

» Consider how the name, number of segments and image data
will'be sent across the TCP connection. Do you need to send

the number of segments?
University of York : M Freeman 2024

Quick Quizzz

DEST: 8000, SRC: 50128, LEN: 10

sE: | ,ACK

Flags: PSH, ACK, Data:

DEST: 8000, SRC: 50128, LEN: 10
SEQ: 0x5A076E13, ACK: 0x0A63E25D
Flags: PSH, ACK, Data: “abcdefghij”

DEST: 8000, SRC: 50128
sel | ack

Flags: PSH, ACK, Data:

SEGMENT 0 SEGMENT 1 SEGMENT 2
DEST: 50128, SRC: 8000, LEN: 0

se:fT ack[

Flags: ACK, Data: NONE

DEST: 50128, SRC: 8000, LEN: 0
seq:[T Akl

Flags: ACK, Data: NONE

e The most important parts of the TCP header are the SEQ and
ACK numbers i.e. to ensure reliability.

» SEQ number is the byte stream number of the first byte in the segment.

» ACK number is the sequence number of the next byte the RX host is
expecting from the TX host.

e Q : what are the missing the SEQ and ACK numbers if:
» RXin order segment 0,1,2 etc, or RX out of order 0,2,17?

University of York : M Freeman 2024

e o help understand
how TCP operates ESG_—_—_——
consider the e
following simplified
TX pseudo code.

e Three main events

» Application data
» Time-out
» Acknowledgement

m ~ NextSegNum

(9]

ion_layer_data:
segment.create(data, NextSegNum }

rkLayer (segment)

egNum ~ NextSegNum + len(data)

notACK, smallestSEQ)

end if
£

University of York : M Freeman 2024

e That was the easy bit :), now need to consider the what ifs :(

e |[poAC: multiple packets in flight at the same time, these may

be received out of order, packet lose may also occur ...
University of York : M Freeman 2024

Time-outs

= 0.125
estRTT = (1 — o) x estRTT + o x curRTT

= 0.25
devRTT = (1 - B) x devRTT + B x | curRTT — estRTT |

Timeout = estRTT + 4 x devRTT

e Q: how do we choose the time-out value

» Too short and we will reject valid segments in transit. Too long
and we waste time waiting for segments that will never arrive.

e RFC 6298 : round trip time (RTT) delay. Initial time-out set to 1
sec. If time-out occurs, time-out value doubled, reset on next RX

segment, do not use times from re-transmitted segments.
University of York : M Freeman 2024

Pause to consider ...

File Edit Tabs Help File Edit Tabs Help

e Time-out example 1

» TX host sends a

BE :-on sEEz & message, it does | =
: nOt receive an | :f:kk‘??’gigj:omms
ACK, timeout

Timeout <
‘Window host will

triggered.
» Q: what happens [z)
next i.e. to the - — s
e Command line tool : tc (traffic control) second “hello” '
» Add 5000ms delay from Pi-1 to Pi-2 RX by the
» Work through the time line of errors (black lines), what causes server?

what, 1:any) University of York : M Freeman 2024 University of York : M Freeman 2024

Pause to consider ... Pause to consider ...

e Time-out example 3

» X host sends a
message, but
ACKs delayed, ,
triggering a b,

» Time-out example 2

» TX host sends a
message, but
only one ACK
received.

Desktop computer

SEQ: 0x5A076E23, ACK: 0xOA63E268, Flags: PSH, Data: “hello”
SEQ: 0x5A076E28, ACK: 0x0AG3E268, Flags: PSH, Data: “you™

‘wait for ACK

» Q: what happens ot Tt
next i.e. does the > Q: what happens 7 : 2 |
client need the next i.e. does the [l e——
missing ACK? client know that .
all data has been
RX?

University of York : M Freeman 2024 University of York : M Freeman 2024

Pause to consider ...

e Time-out example 4

» TX host sends a
message but one
of the “words” is
lost.

» Q: what happens e
next?

¢+ Fast retransmit

» Q: what happens
if only one word
is sent?

e During 3-way
handshake
hosts signal
MSS, max
encapsulated
data size

» not including
IP or TCP
headers

» |If not specified
defaults to
536B

University of York : M Freeman 2024

University of York : M Freeman 2024

SEQ: 0x5A076E28, ACK: 0x0A63E268, Flags: PSH, Data: “are”

decl WBESEE &

Pause to consider ...

e X host transmits segments onto transport mechanism.

Therefore, there can be multiple segments in flight.
» D o B g DI gD

End-End = stages(Dproc Que Tran prop)
» Q: if we are transmitting 1000 byte segments to Australia at
1Mbps how many segments can be in flight?
e The RX host receives these segments, but may not
process them immediately owing to:
» Time taken to pass up the layers in the protocol stack
» The OS is executing other processes.
» There is a significant processing overhead for the application
using these segments.
e Problem : RX host can be swamped with data i.e. data

is coming in faster than it can process (.

University of York : M Freeman 2024

e During 3-way
handshake
hosts signal
MSS, max
encapsulated
data size

» not including
IP or TCP
headers

» |If not specified
defaults to
536B

guf $EMEE &

University of York : M Freeman 2024

Flow control

0 16 31
Acknowledgement number

Flow control

Typical RXBuffer size RXBufer
set to Bandwidth PR

Delay Product (BDP) Segments In Segments out
(LastByteRX) (LastByteRD)

Typical LAN

1 Gbit/s * 1ms RTT . ‘

1079 * 107-3 = 125kB ——
RXWindow

Needs to be larger for

slower networks

Both TX and RX hosts have buffers to store data when busy. The

free space in the RX host’s buffer (RXWindow) is transmitted to
TX host to ensure buffer overflow does not occur.
Data is temporarily stored on “wire” i.e. data in flight.

RX window size transmitted back to host in ACK packets.
University of York : M Freeman 2024

Hosts inform each other how much data they can
receive using the Receive Window field (16bits)

University of York : M Freeman 2024

Flow control Flow control

Receive

Cch $BEEE &

Window ' g i w2

scaling factor window size :

sent during how much'

3-way. data can be in

handshake flight.

' Receive

Allowing RX

winc\;\(/)lwgs buffer size:

greater than how much

64KB data can be
stored in RX

host.

University of York : M Freeman 2024 University of York : M Freeman 2024

equence
number(s]

Graph 2 2h0 1721610 7215101

Time/Sequence Graph (tcptrace)

equence
number(8]

Graph 1:2h0 17216101 557930 » 17216101 38000

equence
Time/Sequence Graph (tcptrace) number)

TCP Graph 1: 0 172.16:101.5:57530 =+ 172.16:101.3:8000.

Time/Sequence Graph (tcptrace)

File Edit Tabs Help
pi@pi-1

100000

pi@pi-2: ~
File Edit Tabs Help 300000
pi@pi-

200000

TX Data

- AN 100000

00020
Timels|

Flow control ; a bit “more” data.
More data in flight

Move from individual ACKs to cumulative ACK
University of York : M Freeman 2024

Flow control : a little data (1).

Test code: simple python program transferring one or

more TCP packets contain random values.
University of York : M Freeman 2024

TIGheVNC: pi's X deskiop (-1:1)
5355 2.587791072 172.16.101.5 172.16.161.9 64256 57960 _ 8006 [ACK] Seq=6866537 Ack=1 Win=64256 Len=1448 TSval=3575613275 TSecr=71127

File Edit View Go Capture Analyze Statistics Telephony Tools Intemals Help

24832 [1CP Window Update] 800 . 57960 [ACK] Seq=1 Ack=6868033 Wi: _ - = _
CORON L BEXGQC P« v a 2 [HIE

5358 2.501032165 172.16.101.9 172.16.101.5

TCP Graph 8: eth0 172.16.101.6:57960 -+ 172.16.101 9:8000 “TCP Graph 8: eth0 172.16.101 5:67960 - 172.16.101.9:8000 Filter v | Expression.

quence quence
number(s] Time/Sequence Graph (tcptrace) number(8] Time/Sequence Graph (tcptrace)
o (7cp Zorow

, 5350 2.591932165 172.16. 16.101 T1ce Vindow Update] 3000 -
8000000 5350 2.501077730 172.16. 16,101 57060 . 8000 [AcK] St

4 5360 2.591983794 172.16. 16,101 57950 _ 8000 [ACK] St
6670000 5361 2.501987350 172.16. 16.201 c 57960 _ 8000 [ACK] S+
7000000 5362 2561081128 172.16.1015 172.16.101. 1514 250 57960 _ 8000 [AcK] S«

» Frano 5357: 65 bytos on wire (528 bits), 66 bytes captured (528 bits) on intorface o
» Ethornet 11, Src: Routerbo_cf:d5:98 (48:0F:5a:cf:d5:88), Dst: Raspberr_75:4d:fd (dc:ab:32:f5:4d:f8)
6000000 6865000 » Internet Protocol Version 4, Src: 172.16.101.3, Dst: 172.16.101.5

~ Transmission control Protocol, Src Port: 8G69, Dst Port: 57969, Seq: 1, Ack: 6868033, Lon:

5000000 RX buffer fu”

o
6860000 11 (relative sequence nunber)
ber: 1 (relative sequence number)]
5068033 (relative ack nusber)
4000000 I8 .. = Hoadar Langth: 32 bytes ()
oio 40

6855000~
3000000

o
2000000 » Options: 25), No-Operation i0-0peration inestasps
6850000 (12 bytes), No-op (N0P), No-Operation (NOP), Tinestasp:

» [Tisestanps]
1000000

e a6 32 5 4d 78 48 6F 5a cf d5 88 08 00 45 00
00 34 9f 4b 40 00 3f 05 7a 49 ac 10 65 09 ac 10

6845000

The window size value fromt.. + Packets: 6374 - Displayed: 6374 (100.0%) - Dropped: 0 (0.0%) Profile: Default

RX window full (0) TX host must stop sending data.

University of York : M Freeman

a lot of data.

University of York : M Freem

Flow control

Pause to consider ...

Delay = Packet length (L bit)
Transmission rate (R bits/sec)

\We have seen that TCP can adjust TX speed to match
the RX speed to avoid buffer overflow.

However, what should the system do if we just have
too much traffic on the network i.e. segments are
being lost because of buffer overflows in routers.

Remember packet switching uses store and forward.
University of York : M Freeman 2024

Congestion control

TICP congestion-control algorithm
RFC 5681:
Three core elements: slow start, congestion avoidance
and fast recovery (implementations do vary)

Slow: start :
Initially CGWnd set to 1 MSS i.e. speed= MSS/RTT.
On each RXACK add 1 MSS to CGWnd i.e. doubled,
speed increases exponentially, not too slow :).
Continues until ACK time-out i.e. host probes the network
to find “max” speed. SSThresold set to CGWnd/2 and
CGWnd reset to 1 MSS.
Process repeated until SSThresold reached, then switch
to congestion avoidance mode.

University of York : M Freeman 2024

Congestion control

Congestion W (CGWindow) = number of u

Initial Speed = MSS <+ RTT (then increase until missed ACK)

TCP handles congested networks by using another
“‘window”, the Congestion window :). It detects a

networks “loading” via the ACK segments
ACK received for unACKed segment. All is good increase
congestion window size i.e. number of segment in flight.
Time-out, or multiple ACKs for same segment RX. Network
congested, decrease congestion window size, i.e. packets

are being dropped, reduce traffic.
University of York : M Freeman 2024

Congestion control

If three repeated ACKs for the same SEQ number RX,
perform fast retransmit and change mode to fast recovery.

Congestion avoidance:

CGWnd is half the value at which congestion was
detected. Now rather than doubling CGWnd size it is
incremented by 1 MSS when all CGWnd segments have
been ACKed i.e. linear increase rather than exponential.

If ACK time-out. SSThresold set to CGWnd/2, CGWnd
reset to 1 MSS, switch back to soft start mode.

If three repeated ACKs for the same SEQ number RX,
perform fast retransmit and change mode to fast recovery.

University of York : M Freeman 2024

Congestion control

Fast recovery. :

CGWnd set to (CGWnd/2)+3MSS. CGWnd increased by
MSS for each duplicate ACK RX.

If ACK time-out occurs, CGWhnd reset to 1 MSS and
SSThresold set to CGWnd/2, switch back to soft start
mode.

If ACK received, CGWnd set to SSThresold, then enter
congestion avoidance mode.

University of York : M Freeman 2024

Congestion control

Remember that flow control i.e. RXWindow size, is
also active at this time, therefore, speed will also be
throttled based on RX host buffer size.

University of York : M Freeman 2024

Congestion control

== Congestion Window Size
=4 SSThreshold

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time

Note, different strategies taken depending on the
version of TCP used. Refer to RFC5681 for

additional details e.g. initial CGWnd size, strategies
used in each mode to adjust CGWnd size etc.

University of York : M Freeman 2024

Summary

TCP is used to implement:
Telnet, SSH, FTP, HTTP, SMTP, POP ...
The internet’'s workhorse protocol.
But, to ensure a reliable connection we need additional
state information (memory on host), header fields and
handshakes in protocol etc, i.e. reliability has a cost.
Sequence and acknowledgement numbers to ensure
segments are not lost.
Time-outs, different types of segments (flags) i.e. SYN, ACK,
PSH etc.
Initial three way handshake to ensure server is ready to
communicate and agree upon parameters used in this

transfer e.g. RXWindow sizes.
University of York : M Freeman 2024

Summary

Whenyou look into all the if-buts-and-maybes of
how TCP works i.e. all the possible scenarios of
time-outs, ACKs etc, its VERY complex.

We have also not looked at the different option field
in the header, or optimisations etc. If you have time

you may want to have a read around the area.

However, we still have some unanswered questions:
How does a host know how to route a TCP packet
across the Internet i.e. we are not using circuit
switching, so how do we know were to send our
packets, how do we get from host A to host B?

University of York : M Freeman 2024

