Systems and Devices 2 (Network) Lec 4a: Network Layer

University of York: M Freeman 2024

Before we get started ...

- We have looked at how packets are transferred at the transport layer i.e. process to process, using:
 - ► TCP, UDP, port numbers etc
 - ▶ BUT, we have not considered how packets get from one host to another e.g. how does a switch know which cable to transmit a packet down to get to a specific destination?
- Moving down to the network layer i.e. host to host communications, using :
 - Internet protocol (IPv4 and IPv6)
 - ► Hubs, switches, routers, and bridges ...
 - Routing and forwarding algorithms
 - Here be dragons :)

University of York: M Freeman 2024

Internet protocol stack

Application

Transport

Network

Link

Physical

- Application layer
- Transport
- Network (layer 3)
 - Routing protocols to direct packets (datagrams) from one host to another across the network of networks that form the Internet. All based around:
 - Internet protocol (IP)
- Link
- Physical

University of York: M Freeman 2024

The problem ...

- Q: how do we get a packet from A to B when we don't know where B is in the world?
 - How are hosts A and B identified on a network?

IPv4

- Internet Protocol v4
 - ► RFC 791: https://tools.ietf.org/html/rfc791
 - ► Created in 1970s, IPv4 in 1981, the core internet protocol.
 - ► IP encapsulates data into a datagram i.e. header and payload, providing a connectionless service.
 - Network interfaces on each host and router "must" have a globally unique IP address.
 - IPv4 32bit address
 - Represented using the dot notation

University of York: M Freeman 2024

 IP header depending on option fields used can vary from 20-60B.

University of York: M Freeman 2024

IPv6

2001:630:61:180::1:F2 2001:630:61:180:0:0:1:F2 2001:0630:0061:0180:0000:0000:0001:00F2

- Internet Protocol v6
 - ► RFC 2460: https://tools.ietf.org/html/rfc2460
 - Draft standard created in 1998 to overcome the issues of IPv4 address exhaustion.
 - IPv6 128bit address.
 - Represented using eight, four digit hexadecimal notation
 - ▶ Note: IPv4 is a "dead" protocol, but we still live in the land of IPv4 for a little longer (maybe forever?).

University of York : M Freeman 2024

IPv4

- Q: how are IP addresses allocated in a network?
 - ▶ In the beginning we had network classes i.e. we used <u>classful</u> addressing, IP address broken down into network and host ID.
 - Advantage: simple. Disadvantage: wasteful.

Example network

Q: how do we organise hosts on a network?

University of York: M Freeman 2024

IPv4

```
Class A network mask: 255.0.0.0
Class B network mask: 255.255.0.0
                                     Class B IP address
Class C network mask : 255.255.255.0
                                  16bit Network ID / 16bit Host ID
             144.32.50.6
Network addr:
                            10010000.00100000.00110010.00000110
Network mask:
              255.255.255.0
                            11111111.11111111.11111111.00000000
Network ID:
              144.32.50.0
                            10010000.00100000.00110010.00000000
mask
           Network ID
                                   Host ID range
Subnet 0: 144.32.50.0
                        : 144.32.50.1 - 144.32.50.62
Subnet 1: 144.32.50.64: 144.32.50.65 - 144.32.50.126
Subnet 2: 144.32.50.128: 144.32.50.129 - 144.32.50.190
Subnet 3: 144.32.50.192: 144.32.50.193 - 144.32.50.254
```

• 144 = 10010000 = Class B.

University of York: M Freeman 2024

IPv4

```
Class A network mask: 255.0.0.0
Class B network mask: 255.255.0.0
Class C network mask: 255.255.255.0
Network addr: 144.32.50.6
                               10010000.00100000.00110010.00000110
                              11111111.11111111.11111111.00000000
Network mask:
             255.255.255.0
Network ID:
               144.32.50.0
                              10010000.00100000.00110010.00000000
Network subnet: 255.255.255.192 11111111.11111111.11111111.11000000
            Network ID
                                      Host ID range
Subnet 0: 144.32.50.0 : 144.32.50.1 - 144.32.50.62
Subnet 1: 144.32.50.64: 144.32.50.65 - 144.32.50.126
Subnet 2: 144.32.50.128: 144.32.50.129 - 144.32.50.190
Subnet 3: 144.32.50.192: 144.32.50.193 - 144.32.50.254
```

 A: In the early Internet top level organisation by network class i.e. A, B or C. Top 4bits of IP address identifies class. University of York: M Freeman 2024

IPv4

```
Class A network mask: 255.0.0.0
                                       Use some of the Host ID bits in
Class B network mask: 255.255.0.0
                                        the Network ID i.e. a subnet
Class C network mask : 255.255.255.0
Network addr: 144.32.50.6
                                10010000.00100000.00110010.00000110
Network mask: 255.255.255.0
                                11111111.11111111.11111111.00000000
Network ID:
               144.32.50.0
                                10010000.00100000.00110010.00000000
Network subnet: 255.255.255.192 11111111.11111111.11111111.11000000
mask
            Network ID
                                        Host ID range
Subnet 0: 144.32.50.0
                           : 144.32.50.1 - 144.32.50.62
Subnet 1: 144.32.50.64 : 144.32.50.65 - 144.32.50.126
Subnet 2: 144.32.50.128: 144.32.50.129 - 144.32.50.190
Subnet 3: 144.32.50.192: 144.32.50.193 - 144.32.50.254
```

 We can then break this network down into subnets. using a network mask, 1s = network ID, 0s = host ID

IPv4

```
Class A network mask: 255.0.0.0
Class B network mask: 255.255.0.0
Class C network mask: 255.255.255.0
                                                        Host ID
Network addr: 144.32.50.6
                               10010000.00100000.00110010.00000110
Network mask: 255.255.25.0
                               11111111.11111111.11111111.00000000
                               10010000.00100000.00110010.00000000
Network ID:
               144.32.50.0
Network subnet: 255.255.255.192 111111111.111111111.11111111.111000000
            Network ID
                                       Host ID range
Subnet 0: 144.32.50.0
                        : 144.32.50.1
                                           - 144.32.50.62
Subnet 1: 144.32.50.64 : 144.32.50.65 - 144.32.50.126
Subnet 2: 144.32.50.128: 144.32.50.129 - 144.32.50.190
Subnet 3: 144.32.50.192: 144.32.50.193 - 144.32.50.254
```

- Need to organise hosts by function or location. Hosts are not just assigned a random IP address i.e. need subnets
 - ► Host ID all 0s (network addr) and all 1s (broadcast addr) reserved

 University of York: M Freeman 2024

IPv4

```
Class A network mask: 255.0.0.0
Class B network mask: 255.255.0.0
Class C network mask : 255.255.255.0
                                                         Host ID
Network addr: 144.32.50.6
                               10010000.00100000.00110010.00000110
                               1111111 111111111.11111111.00000000
Network mask: 255.255.255.0
                                Q: Why not 63? 0000.00110010.00000000
Network ID:
               144.32.50.0
                                    111.111.11111111 11 000000
Network subnet: 255.255
                        Q: Why not 0?
mask
            Network ID
Subnet 0: 144.32.50.0
                         : 144.32.50.65
Subnet 1: 144.32.50.64
Subnet 2: 144.32.50.128: 144.32.50.129 - 144.32.50.190
Subnet 3: 144.32.50.192: 144.32.50.193 - 144.32.50.254
```

- Need to organise hosts by function or location. Hosts are not just assigned a random IP address i.e. need subnets
 - ► Host ID all 0s (network addr) and all 1s (broadcast addr) reserved

 University of York: M Freeman 2024

IPv4

```
Class A network mask: 255.0.0.0
Class B network mask: 255.255.0.0
Class C network mask: 255.255.255.0
                                                 Host ID
Network addr: 144.32.50.6
                           10010000.00100000.00110010.00000110
Network mask: 255.255.255.0
                           11111111.11111111.11111111.00000000
Network ID:
             144.32.50.0
                           10010000.00100000.00110010.00000000
Host ID range
          Network ID
Subnet 0: 144.32.50.0 : 144.32.50.1 - 144.32.50.62
Subnet 1: 144.32.50.64: 144.32.50.65 - 144.32.50.126
Subnet 2: 144.32.50.128: 144.32.50.129 - 144.32.50.190
Subnet 3: 144.32.50.192: 144.32.50.193 - 144.32.50.254
```

- Need to organise hosts by function or location. Hosts are not just assigned a random IP address i.e. need subnets
 - ► Host ID all 0s (network addr) and all 1s (broadcast addr) reserved

 University of York: M Freeman 2024

IPv4

```
Class A network mask: 255.0.0.0
Class B network mask: 255.255.0.0
Class C network mask : 255.255.255.0
                                                        Host ID
Network addr: 144.32.50.6
                               10010000.00100000.00110010.00000110
Network mask: 255.255.255.0
                               11111111.11111111.11111111.00000000
Network ID:
               144.32.50.0
                               10010000.00100000.00110010.00000000
Network subnet: 255.255.255.192 111111111.11111111.1111111 111000000
mask
            Network ID
                                      Host ID range
Subnet 0: 144.32.50.0
                          : 144.32.50.1 - 144.32.50.62
Subnet 1: 144.32.50.64: 144.32.50.65 - 144.32.50.126
Subnet 2: 144.32.50.128: 144.32.50.129 - 144.32.50.190
Subnet 3: 144.32.50.192: 144.32.50.193 - 144.32.50.254
```

- Need to organise hosts by function or location. Hosts are not just assigned a random IP address i.e. need subnets
 - ► Host ID all 0s (network addr) and all 1s (broadcast addr) reserved

 University of York: M Freeman 2024

IPv4

```
Class A network mask: 255.0.0.0
Class B network mask: 255.255.0.0
Class C network mask: 255.255.255.0
                                                 Host ID
Network addr: 144.32.50.6
                           10010000.00100000.00110010.00000110
Network mask: 255.255.255.0
                           11111111.11111111.11111111.00000000
             144.32.50.0
                           10010000.00100000.00110010.00000000
Network ID:
Network ID
                                  Host ID range
Subnet 0: 144.32.50.0 : 144.32.50.1 - 144.32.50.62
Subnet 1: 144.32.50.64 : 144.32.50.65 - 144.32.50.126
Subnet 2: 144.32.50.128: 144.32.50.129 - 144.32.50.190
Subnet 3: 144.32.50.192: 144.32.50.193 - 144.32.50.254
```

- Need to organise hosts by function or location. Hosts are not just assigned a random IP address i.e. need subnets
 - Host ID all 0s (network addr) and all 1s (broadcast addr) reserved

network mask: 255.0.0.0

```
Class A network mask: 255.0.0.0
Class B network mask: 255.255.0.0
Class C network mask: 255.255.255.0
                                                        Host ID
Network addr: 144.32.50.6
                              10010000.00100000.00110010.00000110
Network mask: 255.255.255.0
                              11111111.11111111.11111111.00000000
                              10010000.00100000.00110010.00000000
Network ID:
               144.32.50.0
Network subnet: 255.255.255.192 111111111.11111111.1111111 111000000
                                                       11
            Network ID
                                      Host ID range
Subnet 0: 144.32.50.0 : 144.32.50.1 - 144.32.50.62
Subnet 1: 144.32.50.64: 144.32.50.65 - 144.32.50.126
Subnet 2: 144.32.50.128: 144.32.50.129 - 144.32.50.190
Subnet 3: 144.32.50.192: 144.32.50.193 - 144.32.50.254
```

- Need to organise hosts by function or location. Hosts are not just assigned a random IP address i.e. need subnets
 - ► Host ID all 0s (network addr) and all 1s (broadcast addr) reserved

Broadcast and Collision Domains

- Broadcast domain: hosts that will respond to a broadcast address i.e. are on the same subnet
- Collision domain: hosts that are sharing the same communication channel.

University of York : M Freeman 2024

IPv4

```
Class C network mask: 255.255.255.0
Network addr:
               144.32.50.6
                                10010000.00100000.00110010.00000110
Network mask:
               255.255.255.0
                                11111111.11111111.11111111.00000000
Network ID:
               144.32.50.0
                                10010000.00100000.00110010.00000000
CIDR notation
               144.32.50.6/24 or 144.32.50.0/24
Network subnet: 255.255.255.192 11111111.11111111.11111111.11000000
mask
Subnet 0: 144.32.50.0/26
                                Subnet 1: 144.32.50.64/26
Subnet 2: 144.32.50.128/26
                                Subnet 3: 144.32.50.192/26
```

- To simplify routing and free-up unused network addresses, network ID allocation moved to classless addressing
 - ► CIDR : Classless Inter-Domain Routing, variable length subnet masking (VLSM), no longer limited to classes A, B and C.

Quick Quizzz

 Given the above subnet mask which of these IP addresses are on the same subnets i.e. have the same network address?

University of York: M Freeman 2024

Example network

 Q: Whats the difference between a hub, switch and a router?

IPv6

- The IP block 2001:630::/32 is allocated to Janet.
- Typically a 64bit network prefix + 64bit interface ID

University of York: M Freeman 2024

Network building blocks

- Hub (layer 1): or repeater, multiple ports, incoming signals repeated on each output port, "collisions" can occur, only one signal can be active at a time.
 - In general have been replaced by switches.
 - ► For info on collisions refer to CSMA/CD : http://bit.ly/3oME2Ra
- Switch (mostly layer 2, sometimes 3): learns what host is connected to a port and forwards signals to the correct ports. Collisions can <u>not</u> occur, but could drop packets.
 - Store and forward, packets buffered in memory
- Router (layer 3): uses destination IP addr combined with static and dynamic routing tables to forward packets to the correct ports. Congestion control i.e. RX buffer
 - Tail drop, random early detection (RED) etc.

Network building blocks

- Bridge (layer 2): originally used in hub based systems to divide "collision domains", similar to a switch, learns what packets to forward, creates a single aggregated network from multiple segments.
 - ► Transparent bridging, store and forward
 - A common broadcast domain made from two or more collision domains
- Gateway: a network node that acts as an access point (AP) to another network i.e. a router.
 - Default gateway: in a Small Office / Home Office (SOHO) this is typically a ADSL router, connecting the local network to the Internet

University of York: M Freeman 2024

Demo

- Networking stuff
 - ▶ 10,100,1000 Mb/s. Full / Half duplex, 4 -24 ports
 - ► Note, we will be looking at the physical layer (layer 1) in more detail in later lectures

University of York: M Freeman 2024

Quick Quizzz

 Q: how many collision domains and broadcast domains are there in this network?

University of York: M Freeman 2024

My home network

mike@mike-firew	all:~\$ route -n						
Kernel IP routing table							
Destination	Gateway	Genmask	Flags	Metric	Ref	Use	Iface
0.0.0.0	192.168.1.254	0.0.0.0	UG				enp6s2
192.168.1.0	0.0.0.0	255.255.255.0					enp6s2
192.168.10.0	0.0.0.0	255.255.255.0					enp6s1
192.168.20.0	0.0.0.0	255.255.255.0					enp6s0
192.168.30.0	0.0.0.0	255.255.255.0					enp0s25
192.168.50.0	0.0.0.0	255.255.255.0					wlp5s0
192.168.60.0	0.0.0.0	255.255.255.0					wlp5s0_0
mike@mike-firewall:~\$							

 Kernel IP routing table

 Destination
 Gateway
 Genmask
 Flags Metric Ref
 Use Iface

 0.0.0.0
 192.168.30.254
 0.0.0.0
 UG
 100
 0
 0 enol

 169.254.0.0
 0.0.0.0
 255.255.0.0
 U
 1000
 0
 0 enp5s0

 192.168.30.0
 0.0.0.0
 255.255.255.0
 U
 100
 0
 0 enp5s0

 192.168.30.0
 0.0.0.0
 255.255.255.0
 U
 100
 0
 0 enol

- Route command : route -n
 - ► 0.0.0.0 : invalid or unknown host
 - ▶ 0.0.0.0 / 0 : default route
 - ► The most complete (longest) match wins

Local IP Addresses

- Not all hosts need to be connected to the internet e.g. machines on your local network e.g. printer, network attached storage (NAS), media servers etc.
 - Private network: ip addresses for hosts that do not need to be internet visible. Assigned specific address ranges i.e. should not be used on the internet:
 - 10.0.0.0 / 8 (255.0.0.0)
 - 172.16.0.0 / 12 (255.240.0.0)
 - 192.168.0.0 / 16 (255.255.0.0)
 - ► DHCP failed to connect subnet (not routable, local network only)
 - 169,254,0.0 / 16
- These IP address ranges will be dropped by your ISP i.e. locally routable, not globally routeable addresses.

University of York: M Freeman 2024

NAT

- Q : but how can these hosts (private IP addresses) access resources on the internet?
- A: we can use network address translation (NAT) to convert a local IP to a global IP address:
 - ► A few different flavours : port, dynamic, static ...
 - ► IP masquerading / overloading
 - Change IP address to public (ADSL), update checksums based on ports used.
 - Router maintains a table of who is communicating over what src / dest port and updates local IP address accordingly for all incoming and outgoing segments.
- In the previous home network example we have two NATed networks.

University of York: M Freeman 2024

NAT

Home network setup.

University of York: M Freeman 2024

Static routing

- Q : do I need to add addition routing rules to this system?
 - What happens if host 192.168.30.1 pings 192.168.0.2?
 - ▶ What happens if host 192.168.30.1 pings 192.168.10.2?

((i))

What happens if host 192.168.30.1 pings 8.8.8.8?

Static routing

- What happens if host 192.168.30.1 pings 192.168.0.2?
 - What happens if host 192.168.30.1 pings 192.168.10.2?
 - What happens if host 192.168.30.1 pings 8.8.8.8?

Quick Quizzz

- Q : do I need to add addition routing rules to this system?
 - ▶ What happens if host 192.168.30.1 pings 192.168.0.2?
 - What happens if host 192.168.30.1 pings 192.168.10.2?
- What happens if host 192.168.30.1 pings 8.8.8.8?

University of York: M Freeman 2024

Quick Quizzz

- Q : do I need to add addition routing rules to this system? Where should we add these rules?
 - ► What happens if host 192.168.30.1 pings 10.0.0.1?
 - ► route add -net X.X.X.X netmask X.X.X.X gw X.X.X.X

University of York: M Freeman 2024

- From the guick guizzz we see that a router must contain a routing table (forwarding table) i.e. when it receives a network packet it has to work out what it should do with it.
 - ► Router has to decide what interface to forward the packet to
- From previous lectures we know that packet switching uses the store and forward technique, therefore, a router must be capable of receiving a complete network packet before forwarding it.
 - ▶ Internal operations are lot faster than physical media, therefore, need input/output buffers for full duplex operations.

University of York: M Freeman 2024

What's inside a router?

- Input ports: process link layer signal, IP lookup function to determine output port, forward control packets to routing processor.
 - Ternary Content Addressable Memory (TCAM)

Router

 Routing processor: processes routing protocols, updates routing tables, maintains forwarding table used by input ports, monitors link state.

University of York: M Freeman 2024

Router

 Switching matrix: connects an input queue/port to an output queue/port using crossbar, shared memory or bus etc. Connection determined by forwarding table in input port.

University of York: M Freeman 2024

Router

 Output ports: retransmit received packet onto the selected out port.

University of York: M Freeman 2024

Quick Quizzz

- Q: what type of communication networks are used inside the router i.e. circuit / packet switching?
- Q: if a 10Gbps input port receives packets containing 64bytes of data how long does it have to determine the correct output port?
- Q: what happens if the router can not process packets at this speed?

Summary

- We have identified how hosts are identified on a network i.e. IP addresses, and how these are connected together i.e. hubs, switches and routers.
- A key element of transferring packets across a network are routers, these decide where packets should go next based on their routing tables
- However, we still have some unanswered questions:
 - ▶ What do the other fields in the IP header do?
 - For next time research the TTL and Fragmentation fields
 - ► How do we build a router's routing table i.e. do we have to do this manually or is there a protocol for that :)