SimpleCPU_v1a

Systems and Devices 1 Lec 3b :

 Combinatorial Logic- Block diagram
- ALU : a core requirement of any computer is to process data i.e. the Arithmetic and Logic unit, the ADDER the heart of any CPU.

Binary addition

- Half and full adder
- Basic components can be combined into larger circuits

Demo : relay logic

- Full adder

Binary addition

- Rjpple adder
- Replicated full adders
Three FA, producing a 3 bit adder
- LSB carry in (CIN) is set to zero
- Carry out (COUT) feeds carry signal to next full adder stage

University of York : M Freeman 2021

Binary addition

Binary addition

- Rjpple adder
- Add : 7 + 1

Binary addition

- Rjpple adder
- Add : 7 + 1

Binary addition

Binary addition

University of York : M Freeman 2021

- Rjpple adder
- Add : 7+1

University of York : M Freeman 2021

Binary addition
Ripple adder

- Add : $7+1$

$$
\begin{array}{r}
111 \\
+001 \\
\hline 1000
\end{array}
$$

- Result $8_{10}, 1000_{2}$

- Quick Quizzz
- Convert the following values into binary then confirm the result of the binary addition.
- Is the conversion of the binary result to octal correct?

Binary addition

Binary addition

Binary addition

- Ripple adder

- MSB Carry Out
- Can be passed to additional full adder stage to allow larger adders to be constructed.
- Can be used to indicate that the result has exceeded the maximum bit representation i.e. an overflow has occurred.
- Important, will use these ideas when writing assembly code.

Ripple adder

- Remember that hardware is not software i.e. each full adder will operate in parallel.
- The result will go through a series of states before it settles down to the final value.

Binary addition

Ripple adder

- Add : 7+1
- Step 1

> Result $6_{10,}, 0110_{2}$

Binary addition

- Rjpple adder
- Add : 7 + 1
- Step 2

- Result $4_{10,0100}$

Binary addition

Binary addition

University of York : M Freeman 2021

- Quick Quizz
- If each logic gate takes 10 ns to process a signal, what is the critical path delay of this

Example : adder_8.zip

- 8 bit ripple adder

SimpleCPU_v1a

- Block diagram
- Q : how do we control the ALU's function e.g. pass through, add, subtract and bitwise AND functions, as defined in the instruction set? How do we implement these functions?

University of York : M Freeman 2021

ALU

- ALU interface and control (CTL) signals
- A(7:0) - 8 bit input, driven by ACC
- $\mathrm{B}(7: 0)$ - 8bit input, driven by Data MUX, IR(7:0) or DIN(7:0)
- CTL(2:0) - 3bit input, function select, driven by control logic
- $\mathrm{Y}(7: 0)$ - 8bit output, result of selected function, $\mathrm{Y}<=\mathrm{A}$ op B .
- Pass through = multiplexer, addition = ripple adder
- How do we perform subtraction and bitwise AND? ©

Key skills : working in base 2

- Subtract two binary numbers : 150-44
- Positive, integer

Key skills : working in base 2

- Subtract two binary numbers : 150-44
> Positive, integer

Key skills : working in base 2

- Subtract two binary numbers : 150-44
> Positive, integer

Key skills : working in base 2

- Subtract two binary numbers : 150-44
> Positive, integer

Key skills : working in base 2

- Subtract two binary numbers : 150-44
> Positive, integer
University of York : M Freeman 2021

Key skills : working in base 2

- Borrow case
- Look to the left until the first 1 is found, this defining a block i.e. 10... 0
- Write a 1 in the result and update block to 01.... 1
- Continue subtraction
- Alternatively, another way to think of it
> Borrow '2' from the left column
- Same process you would perform in base 10, but rather than borrowing 10 you borrow 2

Key skills : working in base 2

- Subtract two binary numbers : 150-44
- Positive, integer

Key skills : working in base 2

- Subtract two binary numbers : 150-44
> Positive, integer
University of York : M Freeman 2021

Key skills : working in base 2

- Subtract two binary numbers : 150-44
- Positive, integer

Key skills : working in base 2

- Subtract two binary numbers : 150-44
> Positive, integer

Key skills : working in base 2

- Subtract two binary numbers : 150-44
- Positive, integer

Key skills : working in base 2

- Subtract two binary numbers : 150-44
> Positive, integer
University of York : M Freeman 2021

Key skills : working in base 2

- Subtract two binary numbers : 150-44
> Positive, integer

[^0]Key skills : working in base 2

- Subtract two binary numbers : 150-44
> Positive, integer

Method of Complements

$\stackrel{$| 011 | 010 | 001 | 000 | 111 | 110 | 101 | 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| +3 | +2 | +1 | 0 | -1 | -2 | -3 | -4 |$}{\longrightarrow}$

- Q : How do we represent negative numbers?
- Using the complement of a number e.g. 2s complement
- MSB represents the sign: $0=+$ num, $1=-$ num
- Max positive sign bit $=0, \mathrm{MSB}-1$ to $\operatorname{LSB}=1$
- Max negative sign bit $=1, \mathrm{MSB}-1$ to $\mathrm{LSB}=0$
- To convert to a Two's complement representation
- Invert each bit position (one's complement) $0 \rightarrow 1,1 \rightarrow 0$
- Add 1 (carry ignored)

2s Complement

$1_{10}=00000001_{2}$	
One's Complement :	111111110
Add one:	11111111
$-1_{10}=11111111_{2}$	

$200_{10}=11001000_{2}$
One's Complement : 00110111
Add one : 00111000
$-200_{10}=00111000_{2}$???
$100_{10}=01100100_{2}$
One's Complement : 10011011 Add one : 10011100
$-100_{10}=10011100_{2}$

- Examples
- MSB represents the number's sign i.e. a signed number.
- Maximum value that can be represented is halved compared to an unsigned representation

2s Complement

$-100_{10}=10011100_{2}$	
One's Complement : 01100011	
Add one :	01100100
$100_{10}=01100100_{2}$	

To determine the absolute value of a negative binary number

- Take the Two's complement again
Eight bit signed numbe
$-100_{10}=10011100_{2}$
$100_{10}=01100100_{2}$

Sixteen bit signed number
$-100_{10}=1111111110011100_{2}$
$100_{10}=0000000001100100_{2}$

- Note, when changing the size of a number don't forgot to sign extend.

University of York : M Freeman 2021

Binary subtraction

- Quick Quizzz
- Convert the following values into binary then confirm the result of the binary subtraction.
- Is the conversion of the binary result to hexadecimal correct?
- We could implement the subtraction operation using half and full subtractors, but ...

Key skills : working in base 2

- Using the Two's complement representation simplifies binary subtraction i.e. can be performed using addition
$\Rightarrow A-B=A+(-B)$

Key skills : working in base 2

- Using the Two's complement representation simplifies binary subtraction i.e. can be performed using addition
$-\mathrm{A}-\mathrm{B}=\mathrm{A}+(-\mathrm{B})$
University of York : M Freeman 2021

Key skills : working in base 2

- Using the Two's complement representation simplifies binary subtraction i.e. can be performed using addition
$-\mathrm{A}-\mathrm{B}=\mathrm{A}+(-\mathrm{B})$

Key skills : working in base 2

- Using the Two's complement representation simplifies binary subtraction i.e. can be performed using addition
$-A-B=A+(-B)$

Key skills : working in base 2

- Using the Two's complement representation simplifies binary subtraction i.e. can be performed using addition
$\Rightarrow A-B=A+(-B)$

Key skills : working in base 2

- Using the Two's complement representation simplifies binary subtraction i.e. can be performed using addition
$-A-B=A+(-B)$

Key skills : working in base 2

010010110	150
+111010100	$\underline{-44}$
11	-

- Using the Two's complement representation simplifies binary subtraction i.e. can be performed using addition
$-A-B=A+(-B)$

Key skills : working in base 2

- Using the Two's complement representation simplifies binary subtraction i.e. can be performed using addition
$-A-B=A+(-B)$

Key skills : working in base 2

- Using the Two's complement representation simplifies binary subtraction i.e. can be performed using addition
$-A-B=A+(-B)$

Key skills : working in base 2

- Using the Two's complement representation simplifies binary subtraction i.e. can be performed using addition
$-A-B=A+(-B)$

Key skills : working in base 2

- Using the Two's complement representation simplifies binary subtraction i.e. can be performed using addition
$-A-B=A+(-B)$

Key skills : working in base 2

- Using the Two's complement representation simplifies binary subtraction i.e. can be performed using addition
$-A-B=A+(-B)$

Addition of negative numbers

- When using Two's complement representation the carry bit can no longer be used to indicate an overflow.
- Oveflow - number (result) can not be represented by the maximum number of bits within a memory location or register i.e. need more bits, can not be stored.
- Overflow is determined by these rules
- If operand sign bits are equal then result sign bit must equal operand sign bit
- E.g. $(A+B)$ or $(-A+-B)$ magnitude always bigger
- If operand sign bit are not equal then overflow can not occur
- E.g. $(A-B)$ or $(-A+B)$ magnitude always smaller

Addition of negative numbers

010010110 +111010100 1111	$\frac{150}{40}$
$\frac{10}{11106}$	

- Different sign bits
- Overflow can not occur

- Matching sign bits
- Overflow may occur
- XOR array

Adder / Subtractor unit

- How do we perform 2's complement in hardware?
- ADD_SUB_8
- Ripple adder

SimpleCPU_V1a

- Block diagram
- Q : what else is inside the ALU?

- A : not a lot, a simple ALU for a simple instruction set
- Q : what will happen to the CPD if we have more, "complex" (multiply, divide, square root) instructions? University of York : M Freeman 2021

- Bitwise AND

A	00101101	45
B	$\frac{11000110}{00000100}$	$\frac{198}{4}$

University of York : M Freeman 2021

ALU

- Bitwise AND

[^0]: University of York : M Freeman 2021

