Before we get started ...

Systems and Devices 1 Lec 4 : Sequential Logic

- Combinational logic : outputs are a function of the present inputs.
- The same input will always produce the same output.
- Sequential logic : outputs are dependent on the present inputs and past inputs.
- The same input may produce different outputs as these logic circuits have an internal state (memory).
- A key building block of any computer is memory, the ability to store the results of past calculations, data
- Note, memory performance and a computer's architecture are just as important as the data processing hardware i.e. ALU is only as fast as you can pass data to it

SimpleCPU_v1a

[^0]- Registers : to execute a program a computer needs to remember what its is doing and the data it is processing.

Flip-Flop

- Set-Reset (SR) Flip-Flop
- Stores 1 bit of data on Q output, controlled by:
- SET : active high, set output to a logic 1
- RESET : active high, set output to a logic 0
- Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
- Q : What does the XOR gate implement?

University of York : M Freeman 2021

Flip-Flop

- Set-Reset (SR) Flip-Flop
- Stores 1 bit of data on Q output, controlled by:
- SET : active high, set output to a logic 1
- RESET : active high, set output to a logic 0
- Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
- Q : What does the XOR gate implement?

University of York : M Freeman 2021

Flip-Flop

- Set-Reset (SR) Flip-Flop
- Stores 1 bit of data on Q output, controlled by:
- SET : active high, set output to a logic 1
- RESET : active high, set output to a logic 0
- Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
- Q : What does the XOR gate implement?

University of York : M Freeman 2021

Flip-Flop

- Set-Reset (SR) Flip-Flop
- Stores 1 bit of data on Q output, controlled by:
- SET : active high, set output to a logic 1
- RESET : active high, set output to a logic 0
- Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
, Q : What does the XOR gate implement?
University of York : M Freeman 2021

Flip-Flop

- Set-Reset (SR) Flip-Flop
- Stores 1 bit of data on Q output, controlled by:
- SET : active high, set output to a logic 1
- RESET : active high, set output to a logic 0
- Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
, Q : What does the XOR gate implement?
University of York : M Freeman 2021

Flip-Flop

- Set-Reset (SR) Flip-Flop
- Stores 1 bit of data on Q output, controlled by:
- SET : active high, set output to a logic 1
- RESET : active high, set output to a logic 0
- Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
- Q : What does the XOR gate implement?

University of York : M Freeman 2021

Flip-Flop

- Set-Reset (SR) Flip-Flop
- Stores 1 bit of data on Q output, controlled by:
- SET : active high, set output to a logic 1
- RESET : active high, set output to a logic 0
- Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
- Q : What does the XOR gate implement?

University of York : M Freeman 2021

Flip-Flop

- Set-Reset (SR) Flip-Flop
- Stores 1 bit of data on Q output, controlled by:
- SET : active high, set output to a logic 1
- RESET : active high, set output to a logic 0
- Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
- Q : What does the XOR gate implement?

University of York : M Freeman 2021

Flip-Flop

- Set-Reset (SR) Flip-Flop
- Stores 1 bit of data on Q output, controlled by:
- SET : active high, set output to a logic 1
- RESET : active high, set output to a logic 0
- Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
, Q : What does the XOR gate implement?
University of York : M Freeman 2021

Flip-Flop

- Set-Reset (SR) Flip-Flop
- Stores 1 bit of data on Q output, controlled by:
- SET : active high, set output to a logic 1
- RESET : active high, set output to a logic 0
- Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
- Q : What does the XOR gate implement?

University of York : M Freeman 2021

Flip-Flop

- Set-Reset (SR) Flip-Flop
- Stores 1 bit of data on Q output, controlled by:
- SET : active high, set output to a logic 1
- RESET : active high, set output to a logic 0
- Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
- Q : What does the XOR gate implement?

University of York : M Freeman 2021

Flip-Flop

- Set-Reset (SR) Flip-Flop
- Stores 1 bit of data on Q output, controlled by:
- SET : active high, set output to a logic 1
- RESET : active high, set output to a logic 0
- Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
- Q : What does the XOR gate implement?

University of York : M Freeman 2021

Flip-Flop

- Set-Reset (SR) Flip-Flop
- Stores 1 bit of data on Q output, controlled by:
- SET : active high, set output to a logic 1
- RESET : active high, set output to a logic 0
- Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
, Q : What does the XOR gate implement?
University of York : M Freeman 2021

Flip-Flop

- Set-Reset (SR) Flip-Flop
- Stores 1 bit of data on Q output, controlled by:

SET : active high, set output to a logic 1

- RESET : active high, set output to a logic 0
- Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
- Q : What does the XOR gate implement?

University of York : M Freeman 2021

Flip-Flop

- Set-Reset (SR) Flip-Flop
- Stores 1 bit of data on Q output, controlled by:
- SET : active high, set output to a logic 1
- RESET : active high, set output to a logic 0
- Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
- Q : What does the XOR gate implement?

University of York : M Freeman 2021

Flip-Flop

- Set-Reset (SR) Flip-Flop
- Stores 1 bit of data on Q output, controlled by:
- SET : active high, set output to a logic 1
- RESET : active high, set output to a logic 0
- Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
, Q : What does the XOR gate implement?
University of York : M Freeman 2021

Flip-Flop

- Set-Reset (SR) Flip-Flop
- Stores 1 bit of data on Q output, controlled by:
- SET : active high, set output to a logic 1
- RESET : active high, set output to a logic 0
- Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
, Q : What does the XOR gate implement?
University of York : M Freeman 2021

Flip-Flop

- Set-Reset (SR) Flip-Flop
- Stores 1 bit of data on Q output, controlled by:
- SET : active high, set output to a logic 1
- RESET : active high, set output to a logic 0
- Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
- Q : What does the XOR gate implement?

University of York : M Freeman 2021

Demo : relay logic

- Set Reset (SR) Flip-Flop

University of York : M Freeman 2021

SimpleCPU_v1a

Block diagram

- Problem : to store data in a SR flip-flop you need to test the data you are storing i.e. you need to know if the SET or RESET input needs to be pulsed.

University of York! M Freeman 2021

Flip-Flop

- Data type Flip-Flop: DFF (4013 IC)
- Need 32 transistors to store 1 bit (32T cell) * NOR gate (4001) only needed 8 transistors

Register

- Registers

- To increase the number of bits stored connect multiple D-type Flip-Flops (DFF) in parallel.
- Share common inputs : RESET and CLOCK.
- All DFF updated and cleared at the same time.
- SET not used so connected to OV.
- Each DFF stores 1 bit, so four Flip-Flops can store a 4 bit value.
- DFF commonly have another input not shown here: Clock Enable (CE) to disable updates.

Register

- Registers

> To increase the number of bits stored connect multiple D-type Flip-Flops (DFF) in parallel.

- Share common inputs : RESET and CLOCK.
- All DFF updated and cleared at the same time.
- SET not used so connected to OV.
- Each DFF stores 1 bit, so four Flip-Flops can store a 4 bit value.
- DFF commonly have another input not shown here: Clock Enable (CE) to disable updates.

University of York : M Freeman 2021

Register

- Registers

- To increase the number of bits stored connect multiple D-type Flip-Flops (DFF) in parallel.
- Share common inputs : RESET and CLOCK.
- All DFF updated and cleared at the same time.
- SET not used so connected to OV.
- Each DFF stores 1 bit, so four Flip-Flops can store a 4 bit value.
- DFF commonly have another input not shown here: Clock Enable (CE) to disable updates.

Register

- Registers

- To increase the number of bits stored connect multiple D-type Flip-Flops (DFF) in parallel.
- Share common inputs : RESET and CLOCK.
- All DFF updated and cleared at the same time.
- SET not used so connected to OV.
- Each DFF stores 1 bit, so four Flip-Flops can store a 4 bit value.
- DFF commonly have another input not shown here: Clock Enable (CE) to disable updates.

Register

- Registers

> To increase the number of bits stored connect multiple D-type Flip-Flops (DFF) in parallel.

- Share common inputs : RESET and CLOCK.
- All DFF updated and cleared at the same time.
- SET not used so connected to OV
- Each DFF stores 1 bit, so four Flip-Flops can store a 4 bit value.
- DFF commonly have another input not shown here: Clock Enable (CE) to disable updates.

University of York : M Freeman 2021

Register

- Registers

- To increase the number of bits stored connect multiple D-type Flip-Flops (DFF) in parallel.
- Share common inputs : RESET and CLOCK.
- All DFF updated and cleared at the same time.
- SET not used so connected to OV
- Each DFF stores 1 bit, so four Flip-Flops can store a 4 bit value.
- DFF commonly have another input not shown here: Clock Enable (CE) to disable updates.

University of York : M Freeman 2021

Register

- Registers

- To increase the number of bits stored connect multiple D-type Flip-Flops (DFF) in parallel.
- Share common inputs : RESET and CLOCK.
- All DFF updated and cleared at the same time.
- SET not used so connected to OV.
- Each DFF stores 1 bit, so four Flip-Flops can store a 4 bit value.
- DFF commonly have another input not shown here: Clock Enable (CE) to disable updates.

Register

Registers

- To increase the number of bits stored connect multiple D-type Flip-Flops (DFF) in parallel.
- Share common inputs : RESET and CLOCK.
- All DFF updated and cleared at the same time.
SET not used so connected to OV.
- Each DFF stores 1 bit, so four Flip-Flops can store a 4 bit value.
- DFF commonly have another input not shown here: Clock Enable (CE) to disable updates.

Flip－Flop

－Quick Quizzz
－What does the output waveform of the flip－flop look like？

University of York ：M Freeman 2021

Example ：REG＿8．zip

Name	Value	0.0 us，，，	0.2 us，	$0^{0.4}$ us
－5\％d［7：0］	00110000	00000000×00000011	00001100×00110000	11000000
16 clk		い几ひひ几几几ひい		い几几几几ひれ
16 ce	1			
16 clr	0			
－ \％$_{\text {d }}$ q［7：0］	00110000	00000000×00000011	00001100×0	11000000

－ 8 bit register with clock enable（CE）and clear（CLR）
University of York ：M Freeman 2021

SimpleCPU＿v1a

－Block diagram
－Q：how do we build a counter？
－Need to store the current count value
－Increment this value to generate the next count
L Load a different／starting value

Counter

－Loadable binary counter
＞LD＝0 increment count， $\mathrm{LD}=1$ load new count value．

Counter

- Loadable binary counter
> LD=0 increment count, LD=1 load new count value.
University of York : M Freeman 2021

Counter

- Loadable binary counter
- LD=0 increment count, LD=1 load new count value.

University of York : M Freeman 2021

Counter

- Loadable binary counter
- LD=0 increment count, $\mathrm{LD}=1$ load new count value.

University of York : M Freeman 2021

Counter

- Loadable binary counter
> LD=0 increment count, LD=1 load new count value.
University of York : M Freeman 2021

Counter

- Loadable binary counter
> LD=0 increment count, LD=1 load new count value.
University of York : M Freeman 2021

Counter

- Loadable binary counter
- LD=0 increment count, LD=1 load new count value.

University of York : M Freeman 2021

Counter

- Loadable binary counter
> LD=0 increment count, $\mathrm{LD}=1$ load new count value.
University of York : M Freeman 2021

Counter

- Loadable binary counter
> LD=0 increment count, LD=1 load new count value.
University of York : M Freeman 2021

Counter

- Loadable binary counter
> LD=0 increment count, LD=1 load new count value.
University of York : M Freeman 2021

Counter

- Loadable binary counter
- LD=0 increment count, LD=1 load new count value.

University of York : M Freeman 2021

Counter

- Loadable binary counter
- LD=0 increment count, $\mathrm{LD}=1$ load new count value.

University of York : M Freeman 2021

Counter

- Loadable binary counter
> LD=0 increment count, LD=1 load new count value.
University of York : M Freeman 2021

Counter

- Loadable binary counter
> LD=0 increment count, $\mathrm{LD}=1$ load new count value.
University of York : M Freeman 2021

Counter

- Loadable binary counter
> LD=0 increment count, LD=1 load new count value.
University of York : M Freeman 2021

Counter

- Loadable binary counter
> LD=0 increment count, $\mathrm{LD}=1$ load new count value.
University of York : M Freeman 2021

Example : COUNTER_8.zip

- Loadable binary counter
- CE must be 1 to enable LD

Counter

- Ring counter : a one-hot counter
- First DFF uses PRE (SET) input to initialise first logic 1. Other DFF use CLR (RESET) to initialise all other DFFs to logic 0.
- Each time the clock is updated the one logic 1 is rotated to the next position.

University of York : M Freeman 2021

Counter

- Ring counter : a one-hot counter
- First DFF uses PRE (SET) input to initialise first logic 1. Other DFF use CLR (RESET) to initialise all other DFFs to logic 0.
- Each time the clock is updated the one logic 1 is rotated to the next position.

Counter

- Ring counter : a one-hot counter
- First DFF uses PRE (SET) input to initialise first logic 1. Other DFF use CLR (RESET) to initialise all other DFFs to logic 0 .
- Each time the clock is updated the one logic 1 is rotated to the next position.

University of York : M Freeman 2021

Counter

- Ring counter : a one-hot counter
- First DFF uses PRE (SET) input to initialise first logic 1. Other DFF use CLR (RESET) to initialise all other DFFs to logic 0.
- Each time the clock is updated the one logic 1 is rotated to the next position.

Counter

- Ring counter : a one-hot counter
- First DFF uses PRE (SET) input to initialise first logic 1. Other DFF use CLR (RESET) to initialise all other DFFs to logic 0.
- Each time the clock is updated the one logic 1 is rotated to the next position.

University of York : M Freeman 2021

Counter

- Ring counter : a one-hot counter
- First DFF uses PRE (SET) input to initialise first logic 1. Other DFF use CLR (RESET) to initialise all other DFFs to logic 0.
- Each time the clock is updated the one logic 1 is rotated to the next position.

Counter

- Ring counter : a one-hot counter
- First DFF uses PRE (SET) input to initialise first logic 1. Other DFF use CLR (RESET) to initialise all other DFFs to logic 0 .
- Each time the clock is updated the one logic 1 is rotated to the next position.

University of York : M Freeman 2021

Counter

- Ring counter : a one-hot counter
- First DFF uses PRE (SET) input to initialise first logic 1. Other DFF use CLR (RESET) to initialise all other DFFs to logic 0.
- Each time the clock is updated the one logic 1 is rotated to the next position.

Counter

- Ring counter : a one-hot counter
- First DFF uses PRE (SET) input to initialise first logic 1. Other DFF use CLR (RESET) to initialise all other DFFs to logic 0.
- Each time the clock is updated the one logic 1 is rotated to the next position.

University of York : M Freeman 2021

Counter

- Ring counter : a one-hot counter
- First DFF uses PRE (SET) input to initialise first logic 1. Other DFF use CLR (RESET) to initialise all other DFFs to logic 0 .
- Each time the clock is updated the one logic 1 is rotated to the next position.

University of York : M Freeman 2021

Example : Ring_Counter_3.zip

Counter

- Quick Quizzz
- What does the output waveform Q look like?

Block diagram

- Memory : to execute a program a computer needs to store that program (and data) in memory i.e. a stored program computer.

Memory

- Each memory location stores 16 bits. If implemented using flip-flops this would require: $32 \mathrm{~T} \times 16=512 \mathrm{~T}$ transistors per location.
> That's a lot of silicon, less memory per unit area.
- To improve packing density we can use different memory cells i.e. sacrifice speed, increasing access times. This led to the development of :
- Static Random Access Memory (SRAM)
- Six transistor per bit (6T cell) = 96T
- Dynamic Random Access Memory (DRAM)
- Three transistors, 1 capacitor (3T1C cell) $=48 \mathrm{~T}$

Memory

- Static Random Access Memory cell (SRAM)
- Six transistor cell
- WL : world line, used to select cell to be read or written to.
- BL : bit line, used to read data stored in cell, or new data driven onto this line during write.
- BL : not BL, inverted version of bit line.

- Static Random Access Memory cell (SRAM)
- Six transistor cell
- WL : world line, used to select cell to be read or written to.

Memory

- BL : bit line, used to read data stored in cell, or new data driven onto this line during write.
- BL : not BL, inverted version of bit line.

[^1]
Memory

- Static Random Access Memory cell (SRAM)
- Six transistor cell
- WL : world line, used to select cell to be read or written to.
- BL : bit line, used to read data stored in cell, or new data driven onto this line during write.
- BL : not BL, inverted version of bit line.

University of York : M Freeman 2021

Memory

- Static Random Access Memory cell (SRAM)
- Six transistor cell
- WL : world line, used to select cell to be read or written to.
- BL : bit line, used to read data stored in cell, or new data driven onto this line during write.
- BL : not BL, inverted version of bit line.

University of York : M Freeman 2021

Memory

- Static Random Access Memory cell (SRAM)
- Six transistor cell
- WL : world line, used to select cell to be read or written to.

- BL : bit line, used to read data stored in cell, or new data driven onto this line during write.
- BL : not BL, inverted version of bit line.

Memory

- Static Random Access Memory cell (SRAM)
- Six transistor cell
- WL : world line, used to select cell to be read or written to.
- BL : bit line, used to read data stored in cell, or new data driven onto this line during write.
- BL : not BL, inverted version of bit line.

[^2]
Memory

- Static Random Access Memory cell (SRAM)
- Six transistor cell
- WL : world line, used to select cell to be read or written to.
- BL : bit line, used to read data stored in cell, or new data driven onto this line during write.
- BL : not BL, inverted version of bit line.

Summary

- Key concepts :
- Data is stored in the processor using registers
- Implemented using SR Flip-Flop, D-type Flip-Flop
- 32 transistors ($3-5$ logic gates) to store each bit.
- Registers
- Parallel array of DFFs, share common inputs : RESET and CLOCK, updated and cleared at the same time.
- Counters
- Using different encodings : Binary, Onehot
- Constructed from: registers, multiplexers and adders
- Memory
- SRAM and DRAM memory cells.
- 3 to 6 transistors to store each bit.

University of York : M Freeman 2021

[^0]: - Block diagram

[^1]: University of York : M Freeman 2021

[^2]: University of York : M Freeman 2021

