Systems and Devices 1 Lec 4 : Sequential Logic

Before we get started ...

- Combinational logic : outputs are a function of the present inputs.
 - The same input will always produce the same output.
- Sequential logic : outputs are dependent on the present inputs and past inputs.
 - The same input may produce different outputs as these logic circuits have an internal state (memory).
- A key building block of any computer is memory, the ability to store the results of past calculations, data ...
 - Note, memory performance and a computer's architecture are just as important as the data processing hardware i.e. ALU is only as fast as you can pass data to it

University of York : M Freeman 2021

Slide 3

Slide 1

SimpleCPU_v1a

University of York : M Freeman 2021

Block diagram

Registers : to execute a program a computer needs to remember what its is doing and the data it is processing. University of York : M Freeman 2021 Flip-Flop

Set-Reset (SR) Flip-Flop

Slide 2

lide 4

- Stores 1 bit of data on Q output, controlled by:
 - SET : active high, set output to a logic 1
 - RESET : active high, set output to a logic 0
- Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
 - Q : What does the XOR gate implement? University of York : M Freeman 2021

Set-Reset (SR) Flip-Flop

- Stores 1 bit of data on Q output, controlled by:
 - SET : active high, set output to a logic 1
 - RESET : active high, set output to a logic 0
- Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
 - Q : What does the XOR gate implement?

Set-Reset (SR) Flip-Flop

Slide 6

Slide 8

SET •

- Stores 1 bit of data on Q output, controlled by:
 - SET : active high, set output to a logic 1
 - RESET : active high, set output to a logic 0
- Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
 - Q : What does the XOR gate implement? University of York : M Freeman 2021

Slide 7

Slide 5

Set-Reset (SR) Flip-Flop

- Stores 1 bit of data on Q output, controlled by:
 - SET : active high, set output to a logic 1
 - RESET : active high, set output to a logic 0
- Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
 - Q : What does the XOR gate implement? University of York : M Freeman 2021

Flip-Flop

- Set-Reset (SR) Flip-Flop
 - Stores 1 bit of data on Q output, controlled by:
 - SET : active high, set output to a logic 1
 - RESET : active high, set output to a logic 0
 - Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
 - Q : What does the XOR gate implement? University of York : M Freeman 2021

Set-Reset (SR) Flip-Flop

- Stores 1 bit of data on Q output, controlled by:
 - SET : active high, set output to a logic 1
 - RESET : active high, set output to a logic 0
- Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
 - Q : What does the XOR gate implement? University of York : M Freeman 2021

Flip-Flop

Set-Reset (SR) Flip-Flop

Slide 10

Slide 12

SET •

RESET •

- Stores 1 bit of data on Q output, controlled by:
 - SET : active high, set output to a logic 1
 - RESET : active high, set output to a logic 0
- Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
 - Q : What does the XOR gate implement? University of York : M Freeman 2021

Slide 11

Slide 9

Set-Reset (SR) Flip-Flop

- Stores 1 bit of data on Q output, controlled by:
 - SET : active high, set output to a logic 1
 - RESET : active high, set output to a logic 0
- Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
 - Q : What does the XOR gate implement? University of York : M Freeman 2021

Flip-Flop

- Set-Reset (SR) Flip-Flop
 - Stores 1 bit of data on Q output, controlled by:
 - SET : active high, set output to a logic 1
 - RESET : active high, set output to a logic 0
 - Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
 - Q : What does the XOR gate implement? University of York : M Freeman 2021

Set-Reset (SR) Flip-Flop

- Stores 1 bit of data on Q output, controlled by:
 - SET : active high, set output to a logic 1
 - RESET : active high, set output to a logic 0
- Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
 - Q : What does the XOR gate implement? University of York : M Freeman 2021

Set-Reset (SR) Flip-Flop

Slide 14

Slide 16

- Stores 1 bit of data on Q output, controlled by:
 - SET : active high, set output to a logic 1
 - RESET : active high, set output to a logic 0
- Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
 - Q : What does the XOR gate implement? University of York : M Freeman 2021

Slide 15

Set-Reset (SR) Flip-Flop

- Stores 1 bit of data on Q output, controlled by:
 - SET : active high, set output to a logic 1
 - RESET : active high, set output to a logic 0
- Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
 - Q : What does the XOR gate implement? University of York : M Freeman 2021

- Set-Reset (SR) Flip-Flop
 - Stores 1 bit of data on Q output, controlled by:
 - SET : active high, set output to a logic 1
 - RESET : active high, set output to a logic 0
 - Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
 - Q : What does the XOR gate implement? University of York : M Freeman 2021

Set-Reset (SR) Flip-Flop

- Stores 1 bit of data on Q output, controlled by:
 - SET : active high, set output to a logic 1
 - RESET : active high, set output to a logic 0
- Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
 - Q : What does the XOR gate implement?

Set-Reset (SR) Flip-Flop

Slide 18

Slide 20

SET •

RESET

- Stores 1 bit of data on Q output, controlled by:
 - SET : active high, set output to a logic 1
 - RESET : active high, set output to a logic 0
- Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
 - Q : What does the XOR gate implement? University of York : M Freeman 2021

Slide 19

Set-Reset (SR) Flip-Flop

- Stores 1 bit of data on Q output, controlled by:
 - SET : active high, set output to a logic 1
 - RESET : active high, set output to a logic 0
- Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
 - Q : What does the XOR gate implement? University of York : M Freeman 2021

Flip-Flop

- Set-Reset (SR) Flip-Flop
 - Stores 1 bit of data on Q output, controlled by:
 - SET : active high, set output to a logic 1
 - RESET : active high, set output to a logic 0
 - Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
 - Q : What does the XOR gate implement? University of York : M Freeman 2021

Slide 22

Slide 24

Flip-Flop

Set-Reset (SR) Flip-Flop

- Stores 1 bit of data on Q output, controlled by:
 - SET : active high, set output to a logic 1
 - RESET : active high, set output to a logic 0
- Can be constructed using other logic circuits e.g. two NAND or two NOR gates (will do this in lab).
 - Q : What does the XOR gate implement? University of York : M Freeman 2021

Demo : relay logic

Set Reset (SR) Flip-Flop

University of York : M Freeman 2021

Slide 23

SimpleCPU v1a nstruction MEMORY Address Address Zero KEY Data Out Bus Data Bus Address Bu Control Bu Control Bus Instructio

Block diagram

Problem : to store data in a SR flip-flop you need to test the data you are storing i.e. you need to know if the SET or RESET input needs to be pulsed. University of York : M Freeman 2021

Flip-Flop

 Data type Flip-Flop: DFF (4013 IC)
 Need 32 transistors to store 1 bit (32T cell)
 NOR gate (4001) only needed 8 transistors University of York : M Freeman 2021

Register

Registers

- To increase the number of bits stored connect multiple D-type Flip-Flops (DFF) in parallel.
 - Share common inputs : RESET and CLOCK.
 - All DFF updated and cleared at the same time.
 - SET not used so connected to 0V.
 - Each DFF stores 1 bit, so four Flip-Flops can store a 4 bit value.
 - DFF commonly have another input not shown here: Clock Enable (CE) to disable updates.

Register

Registers

Slide 26

- To increase the number of bits stored connect multiple D-type Flip-Flops (DFF) in parallel.
 - Share common inputs : RESET and CLOCK.
 - All DFF updated and cleared at the same time.
 - SET not used so connected to 0V.
 - Each DFF stores 1 bit, so four Flip-Flops can store a 4 bit value.
 - DFF commonly have another input not shown here: Clock Enable (CE) to disable updates.

University of York : M Freeman 2021

Slide 27

Register

Registers

- To increase the number of bits stored connect multiple D-type Flip-Flops (DFF) in parallel.
 - Share common inputs : RESET and CLOCK.
 - All DFF updated and cleared at the same time.
 - SET not used so connected to 0V.
 - Each DFF stores 1 bit, so four Flip-Flops can store a 4 bit value.
 - DFF commonly have another input not shown here: Clock Enable (CE) to disable updates.
 University of York : M Freeman 2021

Register

Registers

Slide 28

- To increase the number of bits stored connect multiple D-type Flip-Flops (DFF) in parallel.
 - Share common inputs : RESET and CLOCK.
 - All DFF updated and cleared at the same time.
 - SET not used so connected to 0V.
 - Each DFF stores 1 bit, so four Flip-Flops can store a 4 bit value.
 - DFF commonly have another input not shown here: Clock Enable (CE) to disable updates.

Slide 29

Register

Registers

- To increase the number of bits stored connect multiple D-type Flip-Flops (DFF) in parallel.
 - Share common inputs : RESET and CLOCK.
 - All DFF updated and cleared at the same time.
 - SET not used so connected to 0V.
 - Each DFF stores 1 bit, so four Flip-Flops can store a 4 bit value.
 - DFF commonly have another input not shown here: Clock Enable (CE) to disable updates.

University of York : M Freeman 2021

Register

Registers

Slide 30

Slide 32

- To increase the number of bits stored connect multiple D-type Flip-Flops (DFF) in parallel.
 - Share common inputs : RESET and CLOCK.
 - All DFF updated and cleared at the same time.
 - SET not used so connected to 0V.
 - Each DFF stores 1 bit, so four Flip-Flops can store a 4 bit value.
 - DFF commonly have another input not shown here: Clock Enable (CE) to disable updates.

University of York : M Freeman 2021

Slide 31

Register

Registers

- To increase the number of bits stored connect multiple D-type Flip-Flops (DFF) in parallel.
 - Share common inputs : RESET and CLOCK.
 - All DFF updated and cleared at the same time.
 - SET not used so connected to 0V.
 - Each DFF stores 1 bit, so four Flip-Flops can store a 4 bit value.
 - DFF commonly have another input not shown here: Clock Enable (CE) to disable updates.
 University of York : M Freeman 2021

Register

Registers

To increase the number of bits stored connect multiple D-type Flip-Flops (DFF) in parallel.

- Share common inputs : RESET and CLOCK.
 - All DFF updated and cleared at the same time.
- SET not used so connected to 0V.
- Each DFF stores 1 bit, so four Flip-Flops can store a 4 bit value.
- DFF commonly have another input not shown here: Clock Enable (CE) to disable updates.

Quick Quizzz

What does the output waveform of the flip-flop look like?
University of York : M Freeman 2021

Example : REG_8.zip

Slide 34

Slide 36

 8 bit register with clock enable (CE) and clear (CLR) University of York : M Freeman 2021

Slide 33

SimpleCPU_v1a

Block diagram

- Q: how do we build a counter?
 - Need to store the current count value
 - Increment this value to generate the next count
 - Load a different / starting value

University of York : M Freeman 2021

Counter

Loadable binary counter

LD=0 increment count, LD=1 load new count value.

Loadable binary counter LD=0 increment count, LD=1 load new count value. University of York : M Freeman 2021

Counter

Loadable binary counter

LD=0 increment count, LD=1 load new count value. University of York : M Freeman 2021

Loadable binary counter
 LD=0 increment count, LD=1 load new count value.

University of York : M Freeman 2021

Counter

Loadable binary counter

LD=0 increment count, LD=1 load new count value.

Loadable binary counter LD=0 increment count, LD=1 load new count value. University of York : M Freeman 2021

Counter

Counter

Loadable binary counter

LD=0 increment count, LD=1 load new count value. University of York : M Freeman 2021

Loadable binary counter
 LD=0 increment count, LD=1 load new count value.

Counter

Loadable binary counter

LD=0 increment count, LD=1 load new count value.

Loadable binary counter LD=0 increment count, LD=1 load new count value. University of York : M Freeman 2021

Counter

Loadable binary counter

LD=0 increment count, LD=1 load new count value. University of York : M Freeman 2021

Loadable binary counter
 LD=0 increment count, LD=1 load new count value.

Counter

Counter

Loadable binary counter

LD=0 increment count, LD=1 load new count value.

Loadable binary counter LD=0 increment count, LD=1 load new count value. University of York : M Freeman 2021

Counter

- Loadable binary counter
 - LD=0 increment count, LD=1 load new count value. University of York : M Freeman 2021

Slide 52

Counter

LD=0 increment count, LD=1 load new count value.

University of York : M Freeman 2021

Example : COUNTER_8.zip

 Loadable binary counter
 CE must be 1 to enable LD University of York : M Freeman 2021

Ring counter : a one-hot counter

Slide 53

- First DFF uses PRE (SET) input to initialise first logic 1. Other DFF use CLR (RESET) to initialise all other DFFs to logic 0.
- Each time the clock is updated the one logic 1 is rotated to the next position.
 University of York : M Freeman 2021

Counter

- Ring counter : a one-hot counter
 - First DFF uses PRE (SET) input to initialise first logic 1. Other DFF use CLR (RESET) to initialise all other DFFs to logic 0.
 - Each time the clock is updated the one logic 1 is rotated to the next position.
 University of York : M Freeman 2021

- Ring counter : a one-hot counter
 - First DFF uses PRE (SET) input to initialise first logic 1. Other DFF use CLR (RESET) to initialise all other DFFs to logic 0.
 - Each time the clock is updated the one logic 1 is rotated to the next position.
 University of York : M Freeman 2021

Counter

- Ring counter : a one-hot counter
 - First DFF uses PRE (SET) input to initialise first logic 1. Other DFF use CLR (RESET) to initialise all other DFFs to logic 0.
 - Each time the clock is updated the one logic 1 is rotated to the next position.
 University of York : M Freeman 2021

- Ring counter : a one-hot counter
 - First DFF uses PRE (SET) input to initialise first logic 1. Other DFF use CLR (RESET) to initialise all other DFFs to logic 0.
 - Each time the clock is updated the one logic 1 is rotated to the next position.
 University of York : M Freeman 2021

Counter

• Ring counter : a one-hot counter

- First DFF uses PRE (SET) input to initialise first logic 1. Other DFF use CLR (RESET) to initialise all other DFFs to logic 0.
- Each time the clock is updated the one logic 1 is rotated to the next position.
 University of York : M Freeman 2021

- Ring counter : a one-hot counter
 - First DFF uses PRE (SET) input to initialise first logic 1. Other DFF use CLR (RESET) to initialise all other DFFs to logic 0.
 - Each time the clock is updated the one logic 1 is rotated to the next position.
 University of York : M Freeman 2021

Counter

• Ring counter : a one-hot counter

- First DFF uses PRE (SET) input to initialise first logic 1. Other DFF use CLR (RESET) to initialise all other DFFs to logic 0.
- Each time the clock is updated the one logic 1 is rotated to the next position.
 University of York : M Freeman 2021

Ring counter : a one-hot counter

Slide 63

- First DFF uses PRE (SET) input to initialise first logic 1. Other DFF use CLR (RESET) to initialise all other DFFs to logic 0.
- Each time the clock is updated the one logic 1 is rotated to the next position.
 University of York : M Freeman 2021

Counter

- Ring counter : a one-hot counter
 - First DFF uses PRE (SET) input to initialise first logic 1. Other DFF use CLR (RESET) to initialise all other DFFs to logic 0.
 - Each time the clock is updated the one logic 1 is rotated to the next position.
 University of York : M Freeman 2021

Ring counter : a one-hot counter

University of York : M Freeman 2021

Counter

Quick Quizzz

Slide 64

What does the output waveform Q look like?

Slide 65

Slide 67

SimpleCPU_v1a

Block diagram

Memory : to execute a program a computer needs to store that program (and data) in memory i.e. a stored program computer.
University of York : M Freeman 2021

Memory

- Each memory location stores 16bits. If implemented using flip-flops this would require: 32T × 16 = 512T transistors per location.
 - That's a lot of silicon, less memory per unit area.
- To improve packing density we can use different memory cells i.e. sacrifice speed, increasing access times. This led to the development of :
 - Static Random Access Memory (SRAM)
 - Six transistor per bit (6T cell) = 96T
 - Dynamic Random Access Memory (DRAM)
 - Three transistors, 1 capacitor (3T1C cell) = 48T

University of York : M Freeman 2021

Memory

- Static Random Access Memory cell (SRAM)
- Six transistor cell
 - WL : world line, used to select cell to be read or written to.
 - BL : bit line, used to read data stored in cell, or new data driven onto this line during write.
 - BL : not BL, inverted version of bit line.

Memory

- Static Random Access Memory cell (SRAM)
- Six transistor cell

Slide 66

- WL : world line, used to select cell to be read or written to.
- BL : bit line, used to read data stored in cell, or new data driven onto this line during write.
- BL : not BL, inverted version of bit line.

Memory

- Static Random Access Memory cell (SRAM)
- Six transistor cell
 - WL : world line, used to select cell to be read or written to.
 - BL : bit line, used to read data stored in cell, or new data driven onto this line during write.
 - BL : not BL, inverted version of bit line.

Memory

- Static Random Access Memory cell (SRAM)
- Six transistor cell
 - WL : world line, used to select cell to be read or written to.
 - BL : bit line, used to read data stored in cell, or new data driven onto this line during write.
 - BL : not BL, inverted version of bit line.

University of York : M Freeman 2021

Memory

University of York : M Freeman 2021

- Static Random Access Memory cell (SRAM)
- Six transistor cell
 - WL : world line, used to select cell to be read or written to.
 - BL : bit line, used to read data stored in cell, or new data driven onto this line during write.
 - BL : not BL, inverted version of bit line.

Memory

- Static Random Access Memory cell (SRAM)
- Six transistor cell
 - WL : world line, used to select cell to be read or written to.
 - BL : bit line, used to read data stored in cell, or new data driven onto this line during write.
 - BL : not BL, inverted version of bit line.

Memory

- Static Random Access Memory cell (SRAM)
- Six transistor cell
 - WL : world line, used to select cell to be read or written to.
 - BL : bit line, used to read data stored in cell, or new data driven onto this line during write.
 - BL : not BL, inverted version of bit line.

University of York : M Freeman 2021

Summary

• Key concepts :

Slide 74

- Data is stored in the processor using registers
 - Implemented using SR Flip-Flop, D-type Flip-Flop ...
 - 32 transistors (3 5 logic gates) to store each bit.
- Registers

 Parallel array of DFFs, share common inputs : RESET and CLOCK, updated and cleared at the same time.

- Counters
 - Using different encodings : Binary, Onehot …
 - Constructed from: registers, multiplexers and adders ...
- Memory
 - SRAM and DRAM memory cells.
 - 3 to 6 transistors to store each bit. University of York : M Freeman 2021