
University of York : M Freeman 2021University of York : M Freeman 2021

Systems and Devices 1Systems and Devices 1
Lec 5a : The ComputerLec 5a : The Computer

Slide 1

University of York : M Freeman 2021University of York : M Freeman 2021

Before we get started ...Before we get started ...
● Logic + Memory = ComputerLogic + Memory = Computer

► We have all the hardware elements needed to We have all the hardware elements needed to
make a computer i.e. hardware DNA.make a computer i.e. hardware DNA.

● BUT, how do we take these components and BUT, how do we take these components and
configure them to execute a program?configure them to execute a program?
► That final spark of life.That final spark of life.

● Need to consider how we will represent a Need to consider how we will represent a
program in memory, how the instructions program in memory, how the instructions
used are encoded and how these will be used are encoded and how these will be
processed by the hardware.processed by the hardware.

Slide 2

University of York : M Freeman 2021University of York : M Freeman 2021

Simplified Computer ArchitectureSimplified Computer Architecture

● Program : the sequence Program : the sequence
of instructions stored in of instructions stored in
memory required to memory required to
solve a specified solve a specified
problem problem
► Hardware architecture Hardware architecture

required to process required to process
instructionsinstructions
♦ Load / store dataLoad / store data
♦ Perform arithmetic Perform arithmetic

functions ...functions ...

Slide 3

University of York : M Freeman 2021University of York : M Freeman 2021

Computer AnalogyComputer Analogy

● Baking a cakeBaking a cake

Slide 4

University of York : M Freeman 2021University of York : M Freeman 2021

Computer AnalogyComputer Analogy

● Computer architectureComputer architecture
► 2 memories, 1 control unit and 1 data processing unit2 memories, 1 control unit and 1 data processing unit

Slide 5

University of York : M Freeman 2021University of York : M Freeman 2021

Computer AnalogyComputer Analogy

● Computer architectureComputer architecture
► 2 memories, 1 control unit and 1 data processing unit2 memories, 1 control unit and 1 data processing unit

Instruction
Memory

Data
Memory

Control
Unit

Data Processing
Local Storage

Slide 6

University of York : M Freeman 2021University of York : M Freeman 2021

Computer AnalogyComputer Analogy

● Computer architectureComputer architecture
► Fetch : read instruction from cook book.Fetch : read instruction from cook book.

Slide 7

University of York : M Freeman 2021University of York : M Freeman 2021

Computer AnalogyComputer Analogy

● Computer architectureComputer architecture
► Decode : understand instruction and get ingredients from Decode : understand instruction and get ingredients from

storestore

Slide 8

University of York : M Freeman 2021University of York : M Freeman 2021

Computer AnalogyComputer Analogy

● Computer architectureComputer architecture
► Execute : crack egg into bowl.Execute : crack egg into bowl.

Slide 9

University of York : M Freeman 2021University of York : M Freeman 2021

Computer AnalogyComputer Analogy

● Instruction cycle timing diagramInstruction cycle timing diagram
► Fetch – Decode – ExecuteFetch – Decode – Execute

♦ Each instruction requires multiple phases to be processedEach instruction requires multiple phases to be processed
♦ Data and functions encoded, represented by symbols that the Data and functions encoded, represented by symbols that the

hardware within the computer can understandhardware within the computer can understand
► Algorithm : a list of simple instructions, defining the step Algorithm : a list of simple instructions, defining the step

by step procedure for solving a problem by step procedure for solving a problem
► Program : a list of instructions that a computer follows to Program : a list of instructions that a computer follows to

perform a specified task. May require one or more perform a specified task. May require one or more
different algorithms.different algorithms.

Slide 10

University of York : M Freeman 2021University of York : M Freeman 2021

What is an instruction?What is an instruction?

● A computer is not hard-wired (fixed), but can be A computer is not hard-wired (fixed), but can be
controlled by a sequence of selected instructions.controlled by a sequence of selected instructions.
► Instruction : defines a function, input data and where the Instruction : defines a function, input data and where the

result should be storedresult should be stored
♦ Made up of operands and an opcodeMade up of operands and an opcode

Slide 11

University of York : M Freeman 2021University of York : M Freeman 2021

What is an instruction?What is an instruction?

InstructionInstruction

● A computer is not hard-wired (fixed), but can be A computer is not hard-wired (fixed), but can be
controlled by a sequence of selected instructions.controlled by a sequence of selected instructions.
► Instruction : defines a function, input data and where the Instruction : defines a function, input data and where the

result should be storedresult should be stored
♦ Made up of operands and an opcodeMade up of operands and an opcode

Slide 12

University of York : M Freeman 2021University of York : M Freeman 2021

What is an instruction?What is an instruction?

InstructionInstructionOperandOperand OperandOperand

● A computer is not hard-wired (fixed), but can be A computer is not hard-wired (fixed), but can be
controlled by a sequence of selected instructions.controlled by a sequence of selected instructions.
► Instruction : defines a function, input data and where the Instruction : defines a function, input data and where the

result should be storedresult should be stored
♦ Made up of operands and an opcodeMade up of operands and an opcode

Slide 13

University of York : M Freeman 2021University of York : M Freeman 2021

What is an instruction?What is an instruction?

InstructionInstructionOperandOperand OperandOperand

OpcodeOpcode

● A computer is not hard-wired (fixed), but can be A computer is not hard-wired (fixed), but can be
controlled by a sequence of selected instructions.controlled by a sequence of selected instructions.
► Instruction : defines a function, input data and where the Instruction : defines a function, input data and where the

result should be storedresult should be stored
♦ Made up of operands and an opcodeMade up of operands and an opcode

Slide 14

University of York : M Freeman 2021University of York : M Freeman 2021

What is an instruction?What is an instruction?

InstructionInstructionOperandOperand OperandOperand

OpcodeOpcode ResultResult

● A computer is not hard-wired (fixed), but can be A computer is not hard-wired (fixed), but can be
controlled by a sequence of selected instructions.controlled by a sequence of selected instructions.
► Instruction : defines a function, input data and where the Instruction : defines a function, input data and where the

result should be storedresult should be stored
♦ Made up of operands and an opcodeMade up of operands and an opcode

Slide 15

University of York : M Freeman 2021University of York : M Freeman 2021

What instructions do we need?What instructions do we need?
● Three main instruction groupsThree main instruction groups

► Move : read and write data to / from storage locations, Move : read and write data to / from storage locations,
registers (memory) ...registers (memory) ...
♦ Load – Store : move processed information around the machine.Load – Store : move processed information around the machine.

► Arithmetic : +, –, ×, ÷Arithmetic : +, –, ×, ÷
♦ Logic : AND, OR, XOR, NOT ...Logic : AND, OR, XOR, NOT ...

► ControlControl
♦ Change the sequential flow of execution of operations within the Change the sequential flow of execution of operations within the

machine.machine.

● Addressing ModesAddressing Modes
► How operands are accessed and result storedHow operands are accessed and result stored

♦ Implicit : implied by the opcode / architecture.Implicit : implied by the opcode / architecture.
♦ Immediate / literal : constant, value in instruction.Immediate / literal : constant, value in instruction.
♦ Absolute / Direct : address in memory, value in memory.Absolute / Direct : address in memory, value in memory.

Slide 16

University of York : M Freeman 2021University of York : M Freeman 2021

How do we represent instructions?How do we represent instructions?

● Programming language classificationProgramming language classification
► Machine codeMachine code
► Assembler codeAssembler code
► High level codeHigh level code

Slide 17

University of York : M Freeman 2021University of York : M Freeman 2021

How do we represent instructions?How do we represent instructions?

● Programming language classificationProgramming language classification
► Machine codeMachine code

♦ Binary or hexadecimal representationsBinary or hexadecimal representations
■ 00010001 00000000 00010001 0001 (SimpleCPU add 17 to ACC)0001 (SimpleCPU add 17 to ACC)

♦ In general specific to a particular processorIn general specific to a particular processor
♦ ““Machine language, a pattern of bits, encoding machine Machine language, a pattern of bits, encoding machine

operations”operations”
♦ ““The sequence of binary patterns that is executed by the The sequence of binary patterns that is executed by the

hardware; the set of instructions that a computer’s CPU can hardware; the set of instructions that a computer’s CPU can
understand and obey directly without any translation”understand and obey directly without any translation”

► Assembler codeAssembler code
► High level codeHigh level code

Slide 18

University of York : M Freeman 2021University of York : M Freeman 2021

How do we represent instructions?How do we represent instructions?

● Programming language classificationProgramming language classification
► Machine codeMachine code
► Assembler codeAssembler code

♦ Textual representationsTextual representations
■ ADD 0x11 (SimpleCPU add 17 to ACC)ADD 0x11 (SimpleCPU add 17 to ACC)

♦ ““A programming language that utilises symbols to represent A programming language that utilises symbols to represent
operation codes and storage locations”operation codes and storage locations”

♦ ““Human readable notation for the machine language that a Human readable notation for the machine language that a
specific computer architecture uses, replacing raw binary specific computer architecture uses, replacing raw binary
patterns with symbols called mnemonics”patterns with symbols called mnemonics”

► High level codeHigh level code

Slide 19

University of York : M Freeman 2021University of York : M Freeman 2021

How do we represent instructions?How do we represent instructions?

● Programming language classificationProgramming language classification
► Machine codeMachine code
► Assembler codeAssembler code
► High level codeHigh level code

♦ Textual descriptionTextual description
■ IF (A=B) THEN C = C + 1IF (A=B) THEN C = C + 1

♦ ““A programming language where each instruction A programming language where each instruction
corresponds to several machine code instructions”corresponds to several machine code instructions”

♦ ““A high level programming language is more user friendly, to A high level programming language is more user friendly, to
some extent platform independent, providing a layer of some extent platform independent, providing a layer of
abstraction between the programmer and the low level abstraction between the programmer and the low level
hardware”hardware”

Slide 20

University of York : M Freeman 2021University of York : M Freeman 2021

How are instructions stored?How are instructions stored?

● Von Neumann architecture : stored program computerVon Neumann architecture : stored program computer
► Instructions and data stored in the same memoryInstructions and data stored in the same memory

● The processor is connected to memory using 3 buses:The processor is connected to memory using 3 buses:
► Address Bus : ADDR(7:0)Address Bus : ADDR(7:0)
► Data Bus : DATA_IN(15:0), DATA_OUT(15:0)Data Bus : DATA_IN(15:0), DATA_OUT(15:0)
► Control Bus : RAM_EN, RAM_WR, ROM_ENControl Bus : RAM_EN, RAM_WR, ROM_EN

Slide 21

University of York : M Freeman 2021University of York : M Freeman 2021

SimpleCPU_v1aSimpleCPU_v1a

● Address Bus : ADDR(7:0)Address Bus : ADDR(7:0)
► Identify the particular memory location, device or component Identify the particular memory location, device or component

that will be involved in a data transfer. The width that will be involved in a data transfer. The width nn
determines the number of locations (things) that can be determines the number of locations (things) that can be
identified i.e. 2identified i.e. 2nn, if n=8 then 256 memory locations can be , if n=8 then 256 memory locations can be
identified, addresses 0 – 255identified, addresses 0 – 255

Slide 22

University of York : M Freeman 2021University of York : M Freeman 2021

SimpleCPU_v1aSimpleCPU_v1a

● Address bus : 8bits, 256 locations, source IR or PC.Address bus : 8bits, 256 locations, source IR or PC.

0x04

0x1234

Slide 23

University of York : M Freeman 2021University of York : M Freeman 2021

SimpleCPU_v1aSimpleCPU_v1a

● Data Bus : DATA_IN(15:0), DATA_OUT(15:0)Data Bus : DATA_IN(15:0), DATA_OUT(15:0)
► Information (data) that is to be transferred. The width Information (data) that is to be transferred. The width nn

determines how fast data is transferred i.e. bits per second, determines how fast data is transferred i.e. bits per second,
typically matched to internal register width.typically matched to internal register width.

► However, smaller (to reduce IO pins) and larger (increase However, smaller (to reduce IO pins) and larger (increase
data bandwidth) widths are also common, architecture data bandwidth) widths are also common, architecture
dependent.dependent.

Slide 24

University of York : M Freeman 2021University of York : M Freeman 2021

SimpleCPU_v1aSimpleCPU_v1a

● Data-In bus : 16bits, destination IR or ALUData-In bus : 16bits, destination IR or ALU
● Data-out bus : 16bits, source ACCData-out bus : 16bits, source ACC

0x04

0x1234

0x1234

Slide 25

University of York : M Freeman 2021University of York : M Freeman 2021

SimpleCPU_v1aSimpleCPU_v1a

● Control Bus : ROM_EN, RAM_EN, RAM_WRControl Bus : ROM_EN, RAM_EN, RAM_WR
► Synchronises the flow of information across the address and Synchronises the flow of information across the address and

data buses. As a minimum the bus must inform the memory data buses. As a minimum the bus must inform the memory
devices if the transaction is a read or a write operation. devices if the transaction is a read or a write operation.

► In a multi-master (multi-processor) system arbitration is In a multi-master (multi-processor) system arbitration is
required to determine who has access to these buses and at required to determine who has access to these buses and at
what times.what times.

Slide 26

University of York : M Freeman 2021University of York : M Freeman 2021

SimpleCPU_v1aSimpleCPU_v1a

● Control bus : 3bits, enable memory devices, control Control bus : 3bits, enable memory devices, control
memory transaction i.e. read or write.memory transaction i.e. read or write.

0x04

0x1234

0x1234

Slide 27

University of York : M Freeman 2021University of York : M Freeman 2021

SimpleCPU_v1aSimpleCPU_v1a

● We need to define the processor's instruction setWe need to define the processor's instruction set
► The list of assembly language instructions supported by a The list of assembly language instructions supported by a

processor (that can be performed by its architecture).processor (that can be performed by its architecture).

Slide 28

University of York : M Freeman 2021University of York : M Freeman 2021

Instruction setInstruction set

● Register Transfer Level (RTL) syntax, read “Register Transfer Level (RTL) syntax, read “<-<-” as “updated with”” as “updated with”
● KK=Constant, AA=Address, M[]=Memory , Z=Zero FlagKK=Constant, AA=Address, M[]=Memory , Z=Zero Flag

Slide 29

University of York : M Freeman 2021University of York : M Freeman 2021

Type 00 : ImmediateType 00 : Immediate

● MOVE 0x12 : set ACC to value 0x12 MOVE 0x12 : set ACC to value 0x12 ACC ← 0x12ACC ← 0x12

● ADD 0x34 : add the value 0x34 to ACC ADD 0x34 : add the value 0x34 to ACC ACC ← ACC + 0x34ACC ← ACC + 0x34

● SUB 0x56 : subtract value 0x56 from ACCSUB 0x56 : subtract value 0x56 from ACC ACC ← ACC – 0x56ACC ← ACC – 0x56

● AND 0x78 : bitwise AND ACC and value 0x78 AND 0x78 : bitwise AND ACC and value 0x78 ACC ← ACC & 0x78ACC ← ACC & 0x78

Slide 30

University of York : M Freeman 2021University of York : M Freeman 2021

Type 01 : AbsoluteType 01 : Absolute

● LOAD 0x9A : read memory address 0x9A store data in ACC LOAD 0x9A : read memory address 0x9A store data in ACC
► ACC ← M[0x9A]ACC ← M[0x9A]

● STORE 0x9A : write ACC data to memory address 0x9A STORE 0x9A : write ACC data to memory address 0x9A
► M[0x9A] ← ACCM[0x9A] ← ACC

● ADDM 0xBC : add data stored in memory address 0xBC to ACCADDM 0xBC : add data stored in memory address 0xBC to ACC
► ACC ← ACC + M[0xBC]ACC ← ACC + M[0xBC]

● SUBM 0xCD : sub data stored in memory address 0xCD from ACC SUBM 0xCD : sub data stored in memory address 0xCD from ACC
► ACC ← ACC - M[0xCD]ACC ← ACC - M[0xCD]

Slide 31

University of York : M Freeman 2021University of York : M Freeman 2021

Type 10 : DirectType 10 : Direct

● JUMPU 0xDE : update PC with address 0xDEJUMPU 0xDE : update PC with address 0xDE
PC ← 0xDEPC ← 0xDE

● JUMPZ 0xF0 : if ACC=0 update PC with address 0xF0 else inc PCJUMPZ 0xF0 : if ACC=0 update PC with address 0xF0 else inc PC
if Z PC ← 0xF0 else PC=PC+1if Z PC ← 0xF0 else PC=PC+1

● JUMPNZ 0xF0 : if ACC!=0 update PC with address 0xF0 else inc PCJUMPNZ 0xF0 : if ACC!=0 update PC with address 0xF0 else inc PC
if NZ PC ← 0xF0 else PC=PC+1if NZ PC ← 0xF0 else PC=PC+1

Slide 32

University of York : M Freeman 2021University of York : M Freeman 2021

Machine level instructionsMachine level instructions

● Quick QuizzQuick Quizz
► What instructions do these binary patterns What instructions do these binary patterns

represent?represent?
♦ Two trick questions :)Two trick questions :)

Slide 33

University of York : M Freeman 2021University of York : M Freeman 2021

Worked Example : your first programWorked Example : your first program

● Multiply 10 by 3Multiply 10 by 3
► Multiplication by Multiplication by

repeated additionrepeated addition
● Don't worry your Don't worry your

second program second program
is “Hello World”is “Hello World”

START:
MOVE 0x00
STORE 0x0D
MOVE 0x03
STORE 0x0E

LOOP:
JUMPZ 0x0C
SUB 0x01
STORE 0x0E
LOAD 0x0D
ADD 0x0A
STORE 0x0D
LOAD 0x0E
JUMPU 0x04

END:
STOP

START:
 Total = 0
 Count = 3
WHILE Count!=0:
 Total=Total+10
 Count=Count-1
END LOOP

● What is stored in memory locations :What is stored in memory locations :
► 0x0D and 0x0E0x0D and 0x0E
► 0x00 to 0x0C0x00 to 0x0C

● What are the operand values :What are the operand values :
► 0x00, 0x0D, 0x03, 0x0E, 0x0C ...0x00, 0x0D, 0x03, 0x0E, 0x0C ...

Slide 34

University of York : M Freeman 2021University of York : M Freeman 2021

Assembler / LinkerAssembler / Linker

● Convert assembly Convert assembly
language into language into
machine code to machine code to
load into memoryload into memory

● Python programPython program

simpleCPUv1a_as.pysimpleCPUv1a_as.py
simpleCPUv1a_ld.pysimpleCPUv1a_ld.py

START:
MOVE 0x00
STORE 0x0D
MOVE 0x03
STORE 0x0E

LOOP:
JUMPZ 0x0C
SUB 0x01
STORE 0x0E
LOAD 0x0D
ADD 0x0A
STORE 0x0D
LOAD 0x0E
JUMPU 0x04

END:
STOP

Slide 35

University of York : M Freeman 2021University of York : M Freeman 2021

Demo : SimpleCPU_v1aDemo : SimpleCPU_v1a

● Using LED displays identify each instruction and its phases.Using LED displays identify each instruction and its phases.

START:
MOVE 0x00
STORE 0x0D
MOVE 0x03
STORE 0x0E

LOOP:
JUMPZ 0x0C
SUB 0x01
STORE 0x0E
LOAD 0x0D
ADD 0x0A
STORE 0x0D
LOAD 0x0E
JUMPU 0x04

END:
STOP

Slide 36

University of York : M Freeman 2021University of York : M Freeman 2021

Fetch-Decode-ExecuteFetch-Decode-Execute

● FDE operationsFDE operations

 FETCH
Read instruction from
memory[PC] and save
in instruction register
(IR)

 DECODE
Decode instruction in IR,
opcode identifies function
and operands to be read.
Increment PC.

 EXECUTE
Perform identified function
on accessed operands and
save any results produced.

Slide 37

University of York : M Freeman 2021University of York : M Freeman 2021

Whats happening in the CPU?Whats happening in the CPU?

● Need to implement “house keeping” functions in hardware Need to implement “house keeping” functions in hardware
for Fetch – Decode – Execute cycle.for Fetch – Decode – Execute cycle.

● Control when memory elements within the processor are Control when memory elements within the processor are
updated e.g. IR, PC, ACC and RAM.updated e.g. IR, PC, ACC and RAM.

Slide 38

University of York : M Freeman 2021University of York : M Freeman 2021

RTLRTL

● The operation of a computer can be described in The operation of a computer can be described in
terms of a collection of memory elements and the terms of a collection of memory elements and the
movement of data between them.movement of data between them.
► Within the CPU each instruction is broken down into a Within the CPU each instruction is broken down into a

series of steps i.e. micro-instructions.series of steps i.e. micro-instructions.
► Micro-instructions are typically represented using register Micro-instructions are typically represented using register

transfer level (RTL) descriptions. transfer level (RTL) descriptions.

Slide 39

University of York : M Freeman 2021University of York : M Freeman 2021

Whats happening in the CPU?Whats happening in the CPU?

● CPUSim : step through machine instruction phasesCPUSim : step through machine instruction phases
► Micro-instructionsMicro-instructions

Slide 40

University of York : M Freeman 2021University of York : M Freeman 2021

RTLRTL

● Quick QuizzzQuick Quizzz
► Write out the micro-instructions in RTL format for Write out the micro-instructions in RTL format for

the FETCH cycle and DECODE / EXECUTE the FETCH cycle and DECODE / EXECUTE
phases of the MOVE instruction.phases of the MOVE instruction.

EXAMPLES

ACC <- ACC + 1

ACC <- IR(7:0)

ACC <- M[PC]

M[IR(7:0)] <- ACC

Slide 41

University of York : M Freeman 2021University of York : M Freeman 2021

Demo : CPUSimDemo : CPUSim

● Each machine level instruction is implemented by Each machine level instruction is implemented by
multiple micro-instructionsmultiple micro-instructions

Slide 42

University of York : M Freeman 2021University of York : M Freeman 2021

SimpleCPU_v1a : MOVESimpleCPU_v1a : MOVE

● Reset : pulse clear line, reset all DFF to 0Reset : pulse clear line, reset all DFF to 0

0x00

0x00

0

0x00

0x0000

0x00 1

0x000x00

0x00

0x00

0x000x0

0x0000

Slide 43

University of York : M Freeman 2021University of York : M Freeman 2021

SimpleCPU_v1a : MOVESimpleCPU_v1a : MOVE

● Fetch : get instruction stored at PC addressFetch : get instruction stored at PC address

0x00

0x0000

0x00

0

0x00

0x0000

0x00 1

0x000x00

0x00

0x00

0x000x0

Slide 44

University of York : M Freeman 2021University of York : M Freeman 2021

SimpleCPU_v1a : MOVESimpleCPU_v1a : MOVE

● Decode : inc PC, set MUX and ALU control linesDecode : inc PC, set MUX and ALU control lines

0x01

0x00

0

0x01

0x0000

0x00 1

0x000x00

0x00

0x00

0x000x0

0x0000

Slide 45

University of York : M Freeman 2021University of York : M Freeman 2021

SimpleCPU_v1a : MOVESimpleCPU_v1a : MOVE

● Execute : update ACCExecute : update ACC

0x01

0x00

0

0x01

0x0000

0x00 1

0x000x00

0x00

0x00

0x000x0

0x0000

Slide 46

University of York : M Freeman 2021University of York : M Freeman 2021

What if …What if …

● Quick QuizzzQuick Quizzz
► Bad example :), nothing really changed in the Bad example :), nothing really changed in the

processor, lets consider what will happen if:processor, lets consider what will happen if:
♦ MOVE 0x03 instruction is executedMOVE 0x03 instruction is executed

► What will happen if the processor tries to run a What will happen if the processor tries to run a
program before it is loaded into memory i.e. all program before it is loaded into memory i.e. all
memory locations contain the value 0x0000?memory locations contain the value 0x0000?

Slide 47

University of York : M Freeman 2021University of York : M Freeman 2021

Instruction Set SimulatorInstruction Set Simulator

● LOAD: type 01 instruction, absolute addressing modeLOAD: type 01 instruction, absolute addressing mode
► Operands : ACC and IR(7:0)Operands : ACC and IR(7:0)

Slide 48

University of York : M Freeman 2021University of York : M Freeman 2021

SimpleCPU_v1a : LOADSimpleCPU_v1a : LOAD

● Fetch : get instruction stored at PC addressFetch : get instruction stored at PC address

0x07

0x02

0

0x07

XXX

0x02 0

0x0D0x02

0x0D

0x0D

XXXXXX

0x400D

0
2

Slide 49

University of York : M Freeman 2021University of York : M Freeman 2021

SimpleCPU_v1a : LOADSimpleCPU_v1a : LOAD

● Decode : inc PC, set MUX and ALU control linesDecode : inc PC, set MUX and ALU control lines

0x0D

0x02

0

0x08

0x400D

0x02 0

0x000x02

0x0D

XX

0x0D0x4

0x0000

0
3

Slide 50

University of York : M Freeman 2021University of York : M Freeman 2021

SimpleCPU_v1a : LOADSimpleCPU_v1a : LOAD

● Execute : perform subtraction and update ACCExecute : perform subtraction and update ACC

0x0D

0x00

0

0x08

0x400D

0x00 1

0x000x00

0x0D

0x00

0x0D0x4

0x0000

0
3

Slide 51

University of York : M Freeman 2021University of York : M Freeman 2021

SimpleCPU_v1a : ADDSimpleCPU_v1a : ADD

● Quick QuizzzQuick Quizzz
► Can you step through the micro-instructions for the next Can you step through the micro-instructions for the next

instruction : ADD 0x0A? instruction : ADD 0x0A?

0x0D

0x00

0

0x08

0x400D

0x00 1

0x000x00

0x0D

0x00

0x0D0x4

0x0000

0
3

Slide 52

University of York : M Freeman 2021University of York : M Freeman 2021

Instruction Set SimulatorInstruction Set Simulator

● JUMPU: type 10 instruction, direct addressing modeJUMPU: type 10 instruction, direct addressing mode
► Operands : IR(7:0)Operands : IR(7:0)

Slide 53

University of York : M Freeman 2021University of York : M Freeman 2021

SimpleCPU_v1a : JUMPUSimpleCPU_v1a : JUMPU

● Fetch : get instruction stored at PC addressFetch : get instruction stored at PC address

0x0B

0x0A

0

0x0B

XXX

0x0A 0

0x040x0A

0x04

0x04

XXXXXX

0x8004

A
3

Slide 54

University of York : M Freeman 2021University of York : M Freeman 2021

SimpleCPU_v1a : JUMPUSimpleCPU_v1a : JUMPU

● Decode : PC not incremented, ALU / MUXs not usedDecode : PC not incremented, ALU / MUXs not used

0x0B

0x0A

0

0x0B

0x8004

0x0A 0

0x040x0A

0x04

0x04

0x040x8

0x8004

A
3

Slide 55

University of York : M Freeman 2021University of York : M Freeman 2021

SimpleCPU_v1a : JUMPUSimpleCPU_v1a : JUMPU

● Execute : PC updated with jump addressExecute : PC updated with jump address

0x04

0x0A

0

0x04

0x8004

0x0A 0

0x040x0A

0x04

0x04

0x040x8

0x900C

A
3

Slide 56

University of York : M Freeman 2021University of York : M Freeman 2021

Pause To ConsiderPause To Consider
● What do instructions do?What do instructions do?

► (A) tells the processor what to do (A) tells the processor what to do
♦ Black box Black box

► (B) reconfigure hardware to perform a specified task(B) reconfigure hardware to perform a specified task
♦ Set up data paths through processor connecting functional Set up data paths through processor connecting functional

units to memory elementsunits to memory elements
■ MoveMove data / variables data / variables

♦ Configure general purpose processing units (ALU) to Configure general purpose processing units (ALU) to
perform defined functions perform defined functions
■ ProcessProcess data / variables data / variables

● Note: remember the Intel 4004. From one point Note: remember the Intel 4004. From one point
of view software allows hardware to be reused / of view software allows hardware to be reused /
reconfigured to emulate more complex reconfigured to emulate more complex
functionality e.g. multiplication.functionality e.g. multiplication.

Slide 57

University of York : M Freeman 2021University of York : M Freeman 2021

SimpleCPU_v1aSimpleCPU_v1a

● Xilinx ISEXilinx ISE
► Processor Processor

symbol and symbol and
schematic schematic

SimpleCPU_v1a : Slide 8

University of York : M Freeman 2021University of York : M Freeman 2021

Example : SimpleCPU_mul.zipExample : SimpleCPU_mul.zip

● Simulation model of the SimpleCPU processor Simulation model of the SimpleCPU processor
executing the program : 10 x 3 = 30executing the program : 10 x 3 = 30
► Run-time: approximately 140us at 10MHz Run-time: approximately 140us at 10MHz

Slide 59

University of York : M Freeman 2021University of York : M Freeman 2021

SummarySummary

● Key conceptsKey concepts
► Fetch – Decode – Execute cycleFetch – Decode – Execute cycle

♦ How an instruction is processed in the computerHow an instruction is processed in the computer
♦ What an instruction encodes : opcode, operandsWhat an instruction encodes : opcode, operands
♦ How data is accessed, addressing modes : immediate, How data is accessed, addressing modes : immediate,

absolute, direct.absolute, direct.
► How an instructions is representedHow an instructions is represented

♦ High level language, assembler and machine codeHigh level language, assembler and machine code
► How machine level instructions are implemented How machine level instructions are implemented

using a series of micro-instructions.using a series of micro-instructions.

Slide 60

