
University of York : M Freeman 2021University of York : M Freeman 2021

Systems and Devices 1Systems and Devices 1
Lec 6a : CPULec 6a : CPU

Slide 1

University of York : M Freeman 2021University of York : M Freeman 2021

Before we get started ...Before we get started ...
● We now have a basic computer, but it has a number We now have a basic computer, but it has a number

of limitations:of limitations:
► Functions : to simplify the design and construction of our Functions : to simplify the design and construction of our

software and to improve memory efficiency, the processor software and to improve memory efficiency, the processor
needs to support subroutines i.e. function calls.needs to support subroutines i.e. function calls.

► Data types : depending on the application domain a Data types : depending on the application domain a
processor will need to support different data types and processor will need to support different data types and
structures e.g. small numbers, large numbers, arrays, structures e.g. small numbers, large numbers, arrays,
lists, images etc.lists, images etc.

► Memory : need more than ACC + 256 storage locations.Memory : need more than ACC + 256 storage locations.

● Note, solutions based around self modifying code Note, solutions based around self modifying code
are not a good idea, so time for an upgrade :)are not a good idea, so time for an upgrade :)

Slide 2

University of York : M Freeman 2021University of York : M Freeman 2021

SimpleCPU_v1dSimpleCPU_v1d

● Q: can you spot the differences :)Q: can you spot the differences :)

Slide 3

University of York : M Freeman 2021University of York : M Freeman 2021

Improvement 1: MemoryImprovement 1: Memory
● Improvement 1 : increase external memory sizeImprovement 1 : increase external memory size

► SimpleCPU_v1a could only address 256 x 16 bit memory SimpleCPU_v1a could only address 256 x 16 bit memory
locations.locations.
♦ LCD version of HELLO WORLD needed 221 instructions, doesn't LCD version of HELLO WORLD needed 221 instructions, doesn't

leave a lot of room for other functionality.leave a lot of room for other functionality.
► SimpleCPU_v1d memory size increased to 4096 x 16 bit SimpleCPU_v1d memory size increased to 4096 x 16 bit

memory locations.memory locations.

● Q :what architectural features do we need to change Q :what architectural features do we need to change
to implement this improvement?to implement this improvement?
► Communication links: internal / externalCommunication links: internal / external
► Hardware : registers, multiplexers, logic …Hardware : registers, multiplexers, logic …
► How will this affect instruction format?How will this affect instruction format?

Slide 4

University of York : M Freeman 2021University of York : M Freeman 2021

SimpleCPU_v1dSimpleCPU_v1d

● A : internal/external address bus and multiplexerA : internal/external address bus and multiplexer

Slide 5

University of York : M Freeman 2021University of York : M Freeman 2021

SimpleCPU_v1dSimpleCPU_v1d

● A : internal/external address bus and multiplexerA : internal/external address bus and multiplexer

PC(11:0)

IR(11:0)

RY(11:0)

Slide 6

University of York : M Freeman 2021University of York : M Freeman 2021

Improvement 1: MemoryImprovement 1: Memory

● Address bus increased to 12bits.Address bus increased to 12bits.
► Q : why 4096 memory locations, why not 65536 (64K)?Q : why 4096 memory locations, why not 65536 (64K)?
► A : allows the same instruction format to be used i.e. A : allows the same instruction format to be used i.e.

backwards compatibility, new CPU can run old code. backwards compatibility, new CPU can run old code.
♦ To address 65536 memory locations requires 16bit address To address 65536 memory locations requires 16bit address

i.e. no space for opcode, would need 20bit instructionsi.e. no space for opcode, would need 20bit instructions
► Address bus multiplexer hardware increased to 12 bits.Address bus multiplexer hardware increased to 12 bits.

♦ 33% increase in hardware requirements.33% increase in hardware requirements.

Slide 7

University of York : M Freeman 2021University of York : M Freeman 2021

Improvement 1: MemoryImprovement 1: Memory

● 12bit program counter 12bit program counter
► Register, MUX,Register, MUX,

AdderAdder
● Note, components are tightly coupled, small changes Note, components are tightly coupled, small changes

tend to ripple through the complete architecture, tend to ripple through the complete architecture,
resulting in significant increases in hardware.resulting in significant increases in hardware.

Slide 8

University of York : M Freeman 2021University of York : M Freeman 2021

Improvement 1: MemoryImprovement 1: Memory

● Register file : a bank of general purpose registers.Register file : a bank of general purpose registers.

Slide 9

University of York : M Freeman 2021University of York : M Freeman 2021

Improvement 1: Register fileImprovement 1: Register file

● Increase internal “memory” size i.e. the number of Increase internal “memory” size i.e. the number of
general purpose registers and their width.general purpose registers and their width.
► With only one internal register (ACC), a program will need With only one internal register (ACC), a program will need

to store all of its variables in external memory i.e. it will to store all of its variables in external memory i.e. it will
need to perform a lot of LOAD/STORE instructions, need to perform a lot of LOAD/STORE instructions,
reducing processing performance.reducing processing performance.

● Q : how will this affect instruction format?Q : how will this affect instruction format?

Slide 10

University of York : M Freeman 2021University of York : M Freeman 2021

Improvement 1: Register fileImprovement 1: Register file

● Increase internal “memory” size i.e. the number of Increase internal “memory” size i.e. the number of
general purpose registers and their width.general purpose registers and their width.
► With one internal register (ACC), a program will need to With one internal register (ACC), a program will need to

store all of its variables in external memory i.e. it will need store all of its variables in external memory i.e. it will need
to perform a lot of LOAD/STORE instructions, reducing to perform a lot of LOAD/STORE instructions, reducing
processing performance.processing performance.

● Q : how will this affect instruction format?Q : how will this affect instruction format?

RA

RB

RC

RD

RX

RY

Slide 11

University of York : M Freeman 2021University of York : M Freeman 2021

Improvement 1: Register fileImprovement 1: Register file

● Increase internal “memory” size i.e. the number of Increase internal “memory” size i.e. the number of
General Purpose Registers (GPR) and their width.General Purpose Registers (GPR) and their width.
► With one internal register (ACC), a program will need to With one internal register (ACC), a program will need to

store all of its variables in external memory i.e. it will need store all of its variables in external memory i.e. it will need
to perform a lot of LOAD/STORE instructions, reducing to perform a lot of LOAD/STORE instructions, reducing
processing performance.processing performance.

● Q : how will this affect instruction format?Q : how will this affect instruction format?

Slide 12

University of York : M Freeman 2021University of York : M Freeman 2021

Improvement 1: Register fileImprovement 1: Register file

● A : operand source and result destination no longer A : operand source and result destination no longer
implicit, therefore, need extra bit fields:implicit, therefore, need extra bit fields:
► Register select bit-fields : R=Destination & Source Register select bit-fields : R=Destination & Source

RRDD=Destination, R=Destination, R
SS=Source=Source

► Choices to be made : implicit (fixed), two or three operand Choices to be made : implicit (fixed), two or three operand
formats, should all instruction be supported?formats, should all instruction be supported?

Slide 13

University of York : M Freeman 2021University of York : M Freeman 2021

Improvement 1: Register fileImprovement 1: Register file

● A : also affects the control instruction group i.e. A : also affects the control instruction group i.e.
previously conditional JUMP instructions were based previously conditional JUMP instructions were based
on the ACC, but now which register should be tested?on the ACC, but now which register should be tested?
► Again that knock on, ripple affect :)Again that knock on, ripple affect :)
► Solution : use a status register. This records the outcome of Solution : use a status register. This records the outcome of

the last arithmetic or logical function performed. the last arithmetic or logical function performed.
► To improve functionality we can add new status bits.To improve functionality we can add new status bits.

♦ Will look at this again in the next lecture.Will look at this again in the next lecture.

B0 : ZERO
B1 : CARRY
B2 : OVERFLOW
B3 : POSITIVE
B4 : NEGATIVE

Slide 14

University of York : M Freeman 2021University of York : M Freeman 2021

Improvement 2: Data typesImprovement 2: Data types
● Improvement 2 : increase data width Improvement 2 : increase data width

► SimpleCPU_v1a could process 8bit data typesSimpleCPU_v1a could process 8bit data types

♦ Unsigned : 0 to 255, Signed : -128 to +127Unsigned : 0 to 255, Signed : -128 to +127
♦ For some applications this more than sufficient, For some applications this more than sufficient,

however, images commonly contain thousands of however, images commonly contain thousands of
pixels, we need to process larger numbers.pixels, we need to process larger numbers.
■ RGB values: 255+255+255 = 765RGB values: 255+255+255 = 765

► SimpleCPU_v1d updated to support 16bit data typesSimpleCPU_v1d updated to support 16bit data types

♦ Unsigned : 0 to 65535, Signed : -32768 to +32767Unsigned : 0 to 65535, Signed : -32768 to +32767

● Q : what architectural features do we need to Q : what architectural features do we need to
change to implement this improvement?change to implement this improvement?

Slide 15

University of York : M Freeman 2021University of York : M Freeman 2021

Improvement 2: Data typesImprovement 2: Data types

● A : all data buses and processing hardware increased A : all data buses and processing hardware increased
to 16 bits e.g. data MUX, ALU, registers etc.to 16 bits e.g. data MUX, ALU, registers etc.

Slide 16

University of York : M Freeman 2021University of York : M Freeman 2021

Improvement 2: Data typesImprovement 2: Data types

● This improvement has a significant impact on This improvement has a significant impact on
hardware requirements e.g. the move from an 8bit hardware requirements e.g. the move from an 8bit
ripple adder to 16bits will double hardware ripple adder to 16bits will double hardware
requirements.requirements.

● Q : can you “initialise” a register with an 16bit value?Q : can you “initialise” a register with an 16bit value?
► What are the different data sources? What are their data What are the different data sources? What are their data

widths? What do we do if they are different?widths? What do we do if they are different?

Slide 17

University of York : M Freeman 2021University of York : M Freeman 2021

Improvement 2: Data typesImprovement 2: Data types

● Q : can you “initialise” a register with an 16bit value?Q : can you “initialise” a register with an 16bit value?
A : maybe, common problem in most CPUs e.g. A : maybe, common problem in most CPUs e.g.
64bit machines with 32bit instructions.64bit machines with 32bit instructions.

● Solution : create a new instruction to load upper Solution : create a new instruction to load upper
byte, or move (shift) data within a register.byte, or move (shift) data within a register.
► Note, processors are optimised for the most commonly Note, processors are optimised for the most commonly

used tasks. Infrequent operations can be implement using used tasks. Infrequent operations can be implement using
two (or more) simple machine-level instructions without two (or more) simple machine-level instructions without
having a significant impact on performance. having a significant impact on performance.

Slide 18

University of York : M Freeman 2021University of York : M Freeman 2021

Quick QuizzzQuick Quizzz

● Quick QuizzzQuick Quizzz
► Using these instructions write a program to load Using these instructions write a program to load

the 16bit value 0xAAAA into a register.the 16bit value 0xAAAA into a register.
► Hint, will need ten instructions.Hint, will need ten instructions.

♦ Load high byte, Move byte, Load low byteLoad high byte, Move byte, Load low byte
► What instructions would you need to add to What instructions would you need to add to

perform this operation in two instructions?perform this operation in two instructions?

Slide 19

University of York : M Freeman 2021University of York : M Freeman 2021

Improvement 3: Addressing modesImprovement 3: Addressing modes

● With the addition of more general purpose registers With the addition of more general purpose registers
we can now implement two new addressing modes.we can now implement two new addressing modes.
► Register : all operands are in registers.Register : all operands are in registers.
► Register indirect : external memory address stored in Register indirect : external memory address stored in

general purpose register rather than IR.general purpose register rather than IR.
● Q : what bit fields are needed to define these Q : what bit fields are needed to define these

instructions? Do we need to define a “number” i.e. a instructions? Do we need to define a “number” i.e. a
constant or an address?constant or an address?

Slide 20

University of York : M Freeman 2021University of York : M Freeman 2021

Improvement 3: Addressing modesImprovement 3: Addressing modes

● Q : Do we need to define a “number” ?Q : Do we need to define a “number” ?
● A : No, all operands are stored in registers. A : No, all operands are stored in registers.

Therefore, we can use the same “opcode” for each Therefore, we can use the same “opcode” for each
instruction, then use the lower nibble to identify the instruction, then use the lower nibble to identify the
type of register based instruction to perform.type of register based instruction to perform.

Slide 21

University of York : M Freeman 2021University of York : M Freeman 2021

Improvement 3: Addressing modesImprovement 3: Addressing modes
● Note, register based addressing modes have two Note, register based addressing modes have two

advantagesadvantages
► Reduces the need to store variables in memory i.e. Reduces the need to store variables in memory i.e.

removes LOAD/STORE instructions, increasing removes LOAD/STORE instructions, increasing
performance.performance.
♦ Less instruction in a program = quicker execution time.Less instruction in a program = quicker execution time.
♦ Most processors have 8 to 32 registers (or more) Most processors have 8 to 32 registers (or more)

► Removes the need to use self-modifying code as we can Removes the need to use self-modifying code as we can
use registers as pointers i.e. to store the address in use registers as pointers i.e. to store the address in
memory of the data we want to use, rather than using the memory of the data we want to use, rather than using the
absolute addressing mode.absolute addressing mode.

● Q: what architectural features do we need to change Q: what architectural features do we need to change
to implement this improvement?to implement this improvement?

Slide 22

University of York : M Freeman 2021University of York : M Freeman 2021

Improvement 3: Addressing modesImprovement 3: Addressing modes

● A : need to add an A : need to add an
additional input to additional input to
the address MUXthe address MUX
► PCPC
► IR(11:0)IR(11:0)
► RY(11:0)RY(11:0)

Slide 23

University of York : M Freeman 2021University of York : M Freeman 2021

Improvement 3: Addressing modesImprovement 3: Addressing modes

● Q: what architectural features do we need to change?Q: what architectural features do we need to change?
● A: dependents on functionality, addressing modes used A: dependents on functionality, addressing modes used

e.g. displacement, 2 / 3 operand formats, orthogonal e.g. displacement, 2 / 3 operand formats, orthogonal
instruction sets?instruction sets?
► An instruction-set architecture where all instruction types can An instruction-set architecture where all instruction types can

use all addressing modes and storage elements.use all addressing modes and storage elements.

Slide 24

University of York : M Freeman 2021University of York : M Freeman 2021

Improvement 4: Macros/SubroutinesImprovement 4: Macros/Subroutines
● To simplify coding the processor needs to support the To simplify coding the processor needs to support the

software programming constructs used by the software programming constructs used by the
programmer i.e. functions.programmer i.e. functions.

● This can be implemented using either:This can be implemented using either:
► Macros : pre-processor used as a text replacement tool, Macros : pre-processor used as a text replacement tool,

allowing the programmer to define constants and more allowing the programmer to define constants and more
“powerful” macro-instructions from multiple machine-level “powerful” macro-instructions from multiple machine-level
instructionsinstructions

► Subroutines : commonly referred to as routines, procedures, Subroutines : commonly referred to as routines, procedures,
functions, or methods. This is a block of code that can be functions, or methods. This is a block of code that can be
written once and then “called” from anywhere in a program.written once and then “called” from anywhere in a program.

Slide 25

University of York : M Freeman 2021University of York : M Freeman 2021

MacrosMacros

● Example: simpleCPU_v1a macroExample: simpleCPU_v1a macro

► Pre-processing cut and paste.Pre-processing cut and paste.
► Reduces coding time, but does Reduces coding time, but does

not improve memory efficiency not improve memory efficiency
i.e. same code replicated each i.e. same code replicated each
time a macro is used.time a macro is used.

Slide 26

University of York : M Freeman 2021University of York : M Freeman 2021

SubroutinesSubroutines
● Write once Write once

use many.use many.

● Two new Two new
instructions instructions
requiredrequired

► CALLCALL
► RETRET

Slide 27

University of York : M Freeman 2021University of York : M Freeman 2021

SubroutinesSubroutines

● CALL AACALL AA
► M[SP] <- PC+1 M[SP] <- PC+1
► SP <- SP+1 SP <- SP+1
► PC <- AAPC <- AA

● RETRET
► SP <- SP-1SP <- SP-1
► PC <- M[SP]PC <- M[SP]

● CALL instruction comparable to CALL instruction comparable to
JUMP, but also pushes PC+1 JUMP, but also pushes PC+1
onto subroutine return stack.onto subroutine return stack.

● RET instruction pops return RET instruction pops return
address off stack and updated address off stack and updated
PC PC

Slide 28

University of York : M Freeman 2021University of York : M Freeman 2021

SubroutinesSubroutines
● New PC New PC

additional:additional:
► LIFO LIFO

bufferbuffer
► Adder Adder

(inc)(inc)

Slide 29

University of York : M Freeman 2021University of York : M Freeman 2021

SubroutinesSubroutines
● New PC New PC

additional:additional:
► LIFO LIFO

bufferbuffer
► Adder Adder

(inc)(inc)

Slide 30

University of York : M Freeman 2021University of York : M Freeman 2021

SubroutinesSubroutines
● New PC New PC

additional:additional:
► LIFO LIFO

bufferbuffer
► Adder Adder

(inc)(inc)

Slide 31

University of York : M Freeman 2021University of York : M Freeman 2021

SubroutinesSubroutines
● LIFO 12LIFO 12

► Four 12bit Four 12bit
registersregisters

► Stack Stack
countercounter

► DecrementerDecrementer
► 2-4 onehot 2-4 onehot

decoderdecoder
► Four input Four input

8bit MUX8bit MUX

Slide 32

University of York : M Freeman 2021University of York : M Freeman 2021

SubroutinesSubroutines
● LIFO 12LIFO 12

► Four 12bit Four 12bit
registersregisters

► Stack Stack
countercounter

► DecrementerDecrementer
► 2-4 onehot 2-4 onehot

decoderdecoder
► Four input Four input

8bit MUX8bit MUX

Slide 33

University of York : M Freeman 2021University of York : M Freeman 2021

Quick QuizzzQuick Quizzz

● Q: what does this circuit do?Q: what does this circuit do?
► Hint, inputs A and B are a two bit number.Hint, inputs A and B are a two bit number.

A B Y X
0 0 1 1
0 1 0 0
1 0 0 1
1 1 1 0

Slide 34

University of York : M Freeman 2021University of York : M Freeman 2021

SubroutinesSubroutines
● LIFO 12LIFO 12

► Four 12bit Four 12bit
registersregisters

► Stack Stack
countercounter

► DecrementerDecrementer
► 2-4 onehot 2-4 onehot

decoderdecoder
► Four input Four input

8bit MUX8bit MUX

RD PNTR

WR PNTR

STACK
PNTR

STACK

Slide 35

University of York : M Freeman 2021University of York : M Freeman 2021

SubroutinesSubroutines

● Nested subroutine calls : resetNested subroutine calls : reset
► Execute instruction at address 0.Execute instruction at address 0.

Slide 36

University of York : M Freeman 2021University of York : M Freeman 2021

SubroutinesSubroutines

● Nested subroutine calls : CALL SubANested subroutine calls : CALL SubA
► Push return address onto stackPush return address onto stack

Slide 37

University of York : M Freeman 2021University of York : M Freeman 2021

SubroutinesSubroutines

● Nested subroutine calls : CALL SubANested subroutine calls : CALL SubA
► Update write and read pointersUpdate write and read pointers

Slide 38

University of York : M Freeman 2021University of York : M Freeman 2021

SubroutinesSubroutines

● Nested subroutine calls : CALL SubANested subroutine calls : CALL SubA
► Update PC with address of SubAUpdate PC with address of SubA

Slide 39

University of York : M Freeman 2021University of York : M Freeman 2021

SubroutinesSubroutines

● Nested subroutine calls : CALL SubBNested subroutine calls : CALL SubB
► Push return address onto stackPush return address onto stack

Slide 40

University of York : M Freeman 2021University of York : M Freeman 2021

SubroutinesSubroutines

● Nested subroutine calls : CALL SubBNested subroutine calls : CALL SubB
► Update write and read pointersUpdate write and read pointers

Slide 41

University of York : M Freeman 2021University of York : M Freeman 2021

SubroutinesSubroutines

● Nested subroutine calls : CALL SubBNested subroutine calls : CALL SubB
► Update PC with address of SubBUpdate PC with address of SubB

Slide 42

University of York : M Freeman 2021University of York : M Freeman 2021

SubroutinesSubroutines

● Nested subroutine calls : CALL SubCNested subroutine calls : CALL SubC
► Push return address onto stackPush return address onto stack

Slide 43

University of York : M Freeman 2021University of York : M Freeman 2021

SubroutinesSubroutines

● Nested subroutine calls : CALL SubCNested subroutine calls : CALL SubC
► Update write and read pointersUpdate write and read pointers

Slide 44

University of York : M Freeman 2021University of York : M Freeman 2021

SubroutinesSubroutines

● Nested subroutine calls : CALL SubCNested subroutine calls : CALL SubC
► Update PC with address of SubCUpdate PC with address of SubC

Slide 45

University of York : M Freeman 2021University of York : M Freeman 2021

SubroutinesSubroutines

● Nested subroutine calls : CALL SubDNested subroutine calls : CALL SubD
► Push return address onto stackPush return address onto stack

Slide 46

University of York : M Freeman 2021University of York : M Freeman 2021

SubroutinesSubroutines

● Nested subroutine calls : CALL SubDNested subroutine calls : CALL SubD
► Update write and read pointersUpdate write and read pointers

Slide 47

University of York : M Freeman 2021University of York : M Freeman 2021

SubroutinesSubroutines

● Nested subroutine calls : CALL SubDNested subroutine calls : CALL SubD
► Update PC with address of SubDUpdate PC with address of SubD

Slide 48

University of York : M Freeman 2021University of York : M Freeman 2021

SubroutinesSubroutines

● Nested subroutine calls : Execute subroutineNested subroutine calls : Execute subroutine
► MOVE RA 0x01MOVE RA 0x01

Slide 49

University of York : M Freeman 2021University of York : M Freeman 2021

SubroutinesSubroutines

● Nested subroutine calls : RETNested subroutine calls : RET
► Pop return address off stack, update PCPop return address off stack, update PC

Slide 50

University of York : M Freeman 2021University of York : M Freeman 2021

SubroutinesSubroutines

● Nested subroutine calls : RETNested subroutine calls : RET
► Update read and write pointersUpdate read and write pointers

Slide 51

University of York : M Freeman 2021University of York : M Freeman 2021

SubroutinesSubroutines

● Nested subroutine calls : RETNested subroutine calls : RET
► Pop return address off stack, update PC & pointersPop return address off stack, update PC & pointers

Slide 52

University of York : M Freeman 2021University of York : M Freeman 2021

SubroutinesSubroutines

● Nested subroutine calls : RETNested subroutine calls : RET
► Pop return address off stack, update PC & pointersPop return address off stack, update PC & pointers

Slide 53

University of York : M Freeman 2021University of York : M Freeman 2021

SubroutinesSubroutines

● Nested subroutine calls : RETNested subroutine calls : RET
► Pop return address off stack, update PC & pointersPop return address off stack, update PC & pointers

Slide 54

University of York : M Freeman 2021University of York : M Freeman 2021

SubroutinesSubroutines
● There are a lot of different solutions to implementing There are a lot of different solutions to implementing

the CALL / RET stack, with varying levels of the CALL / RET stack, with varying levels of
hardware and software support (next lecture). hardware and software support (next lecture).
► Typically, rather than using a separate hardware Typically, rather than using a separate hardware

component (LILO), the stack is implemented in external component (LILO), the stack is implemented in external
memory i.e. alongside instructions and data.memory i.e. alongside instructions and data.

► When a CALL instruction is executed the PC is When a CALL instruction is executed the PC is
automatically saved into one of the general purpose automatically saved into one of the general purpose
registers, or a specific address: stack pointer register (SP).registers, or a specific address: stack pointer register (SP).
♦ The return address is then calculated and written to memory, The return address is then calculated and written to memory,

either under software or hardware control.either under software or hardware control.

► Calling parameters / local variables used by the subroutine Calling parameters / local variables used by the subroutine
also stored on the stack. Separate data stacks.also stored on the stack. Separate data stacks.

Slide 55

University of York : M Freeman 2021University of York : M Freeman 2021

SummarySummary
● The more complicated the problem the more The more complicated the problem the more

instructions and data a program will need.instructions and data a program will need.
► Always need more memory :)Always need more memory :)
► Increasing internal storage (register file) helps reduce Increasing internal storage (register file) helps reduce

LOAD/STORE instructions, improving processing performance.LOAD/STORE instructions, improving processing performance.
► Improve memory efficiency (code density) by using subroutines.Improve memory efficiency (code density) by using subroutines.

● We would like to have an orthogonal instruction-set, We would like to have an orthogonal instruction-set,
however, we are limited by processor's architecture however, we are limited by processor's architecture
i.e. memory width, internal architecture etc.i.e. memory width, internal architecture etc.
► When designing a CPU compromises have to be made :(When designing a CPU compromises have to be made :(

● Match the processor to the application domain i.e. in Match the processor to the application domain i.e. in
terms of instruction functionality and addressing terms of instruction functionality and addressing
modes.modes.

Slide 56

